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Abstract: Detection performance in sonar systems is typically quantified by the probabilities
of detection (Py) and false alarm (Py) in a single sonar resolution cell. When system-level
performance is paramount, however, the inherent inaccuracies in mapping to the cell-level
(P4, Py) detector operating point encourage consideration of approximate performance mea-
sures such as J-divergence. The basic application of J-divergence to modeling sonar detection
performance is presented in this paper. The properties of J-divergence making it an appeal-
ing choice are covered: a single scalar measure of detection performance (i.e., a detection
currency), summing to accrue J-divergence across multiple independent measurements (e.g.,
from multiple source signals, waveforms, or arrays), a data-processing inequality dictating
that processing cannot improve J-divergence, and an asymptotic relationship to the multiple-
measurement receiver operating characteristic curve. Simple forward models of J-divergence
are presented for matched filters and energy detectors when applied to several standard sig-
nal models in Gaussian noise. Similarly accessible results for inverse modeling of the design
signal-to-noise power ratio (termed “DJ”) required to achieve a specified level of J-divergence
detection currency are presented. This provides a direct replacement for the detection thresh-
old (DT) term in the sonar equation that is easier to evaluate and apply. The efficacy of the
approach is demonstrated by comparing DJ and DT for matched filters and energy detectors.
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1. INTRODUCTION

Sonar performance models are used when designing or tuning sonar systems, evaluating
their performance in specific environments, or when comparing competing systems or designs.
Modeling the detection performance of a sonar system often entails (i) the basic sonar equa-
tion to obtain the signal-to-noise power ratio (SNR) after coherent detection processing, (ii)
forward modeling of detection performance given the SNR, and (iii) inverse modeling of the
design SNR required to achieve a detection-performance specification. Traditional approaches
(e.g., [1, Ch. 12]) define detection performance using the probabilities of detection and false
alarm (P, Py) observed for a single sonar resolution cell. However, many systems utilize
measurements obtained from multiple waveforms, frequency bands, sensors, or platforms. Ex-
tending the traditional analysis to multiple-measurement detection probabilities (PDM, PFM)
is often so complicated that only simple scenarios are considered where single-measurement
tools can be applied to approximate multiple-measurement detection performance. An alterna-
tive approach based on J-divergence [2,3] is proposed here for multiple-measurement systems.

Although the traditional approach provides an accurate representation of cell-level detection
performance, it often inaccurately represents system-level performance (e.g., by approximating
the multiple-measurement detector or not precisely converting Py to a false-alarm rate). These
inaccuracies between cell- and system-level modeling encourage considering other metrics that
may be approximate at the cell level, but easier to apply to multiple measurements. Potentially
suitable alternatives include the total SNR, detection index, and J-divergence. Of these, the
J-divergence provides a useful balance across considerations of accuracy, evaluation difficulty,
applicability throughout the signal and information processing chain (SIPC), and extension to
more complicated scenarios. In contrast to the (P, Pf) operating point, .J-divergence distills
the receiver operating characteristic (ROC) curve into a detection currency without a specific
operating point.

The basic tools required to model sonar detection performance with .J-divergence are pre-
sented in this paper. A brief background on J-divergence and its properties are presented in
Sect. 2. An asymptotic relationship to the ROC curve is used to characterize low, medium,
and high levels of quality for J-divergence detection currency. With a focus on matched filters
and energy detectors, the application to sonar found in Sect. 3 presents forward models for .J-
divergence as a function of the SNR when detecting the basic sonar signal models (Gaussian-
fluctuating, deterministic, and Rician) in Gaussian noise. These functional relationships are
then inverted to obtain the design SNR (termed “DJ”) as a function of a detection-currency
specification, yielding a direct replacement for the detection threshold (DT) term in the sonar
equation. Although the Gaussian-fluctuating signal permits analytic solutions, approximations
are developed for the others, making them similarly convenient to apply. Finally, an example
comparison is presented in Sect. 4 between DT and DJ for the aforementioned performance
levels.

2. J-DIVERGENCE AND ITS PROPERTIES

The J-divergence can be found in the early work of Jeffreys [2], [3, Sect. 3.10, eq. 1]. Itis
also a member of the Ali-Silvey [4] class of distance measures between two statistical distribu-
tions. Suppose 7" is the detector decision statistic and fo(¢) and f(¢) are its probability density
functions (PDFs) under the noise-only (Hj) and signal-present (/) hypotheses, respectively.

Page 338



UACE2023 - Conference Proceedings

The J-divergence between these distributions is

7= [t - stonios | 243 at m
) fo(t)

which is equivalent to the difference in the average log-likelihood ratio (LLR) between the two

hypotheses. Recalling the optimality of the LLR (maximizing P, for a given Py), it is clear that

an increase in J-divergence is indicative of an improvement in detection performance.

The key properties of J-divergence supporting its use in modeling sonar detection per-
formance are (i) it sums over independent measurements, (ii) it can be evaluated throughout
the SIPC, and (ii1) it has an asymptotic (large sample/low SNR) relationship to the multiple-
measurement operating point. The first property means accounting for multiple dissimilar mea-
surements is straightforward and only requires evaluating the .J-divergence on each individual
measurement. If .J,, is the J-divergence for the mth of M independent measurements, the total
J-divergence is simply

M
T=Y Jn (2)

m=1

The level of difficulty for evaluating multiple measurements is essentially the same as it is
for a single measurement, which is not the case when evaluating (PDM, PFM). Because .J-
divergence represents the potential for detection performance over multiple measurements, the
sum in (2) inherently assumes the measurements are combined optimally. The applicability
of the data processing inequality (i.e., processing can only maintain or decrease .J-divergence)
implies (2) can be used as an upper bound on performance, which circumvents the need to
define and evaluate the multiple-measurement detector. It also permits evaluation at different
points in the SIPC, with increasing prediction accuracy as more processing steps are included.

The final key property relates J-divergence to the asymptotic ROC curve of the optimal
multiple-measurement detector according to

J =[® (1 — PEM) — ®~'(1 — PDM)]”, 3)

where ®~1(p) is the functional inverse of the standard-normal cumulative distribution function
(CDF). This result implies that J-divergence will be an exact surrogate for detection perfor-
mance asymptotically as the number of (increasingly weak) measurements tends to infinity. As
will be seen, the relationship holds accurately enough when the number of measurements is
above about five for J-divergence to be useful in representing detection operating points.

2.1. CONVERSION TO DECIBELS AND NOMINAL OPERATING POINTS

As might be expected of a detection currency, J-divergence is monotonically related to SNR
and consequently subject to a similarly large span of values. It will therefore be convenient
to describe it using a decibel notation. Based on the example to be presented in Sect. 3, an
argument can be made for converting J-divergence to decibels via

Jag = blogy, J = 10log,oV/J  [units: dB]. (4)

owing to its low-SNR relationship to a squared ratio of intensities. The decibel quantity in (4)
will be referred to as J-divergence detection currency.
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In order for J-divergence to be of practical use, the scale of detection currency needs to
be interpreted. The asymptotic relationship in (3) provides a potentially coarse link between a
detection operating point and detection currency. Three different levels of quality in detector
operating points are shown in Table 1 along with the corresponding asymptotic-ROC-related
detection currency (J33). However, in many scenarios this relationship does not need to be
precise and the nominal levels of 5, 8, and 10dB of detection currency (Jg3™") can be used
to represent, respectively, low, medium and high performance. In systems with less or more
stringent requirements, it is straightforward to shift the detection-currency scale as appropriate.

Table 1: Nominal operating points

Quality Py P f J 3;3] J ggm

low 0.5 107* 57dB 5dB
medium 0.7 107® 79dB 8dB
high 0.9 1076 9.8dB 10dB

3. MODELING J-DIVERGENCE IN SONAR APPLICATIONS

Evaluating detection performance requires defining statistical models of the signal and noise
as well as the detector itself. In this paper only the basic case of Gaussian bandpass noise
and three standard signal models are considered with a focus on detectors formed from the
instantaneous intensity, which include quadrature matched filters (QMFs) and energy detectors
(EDs). It is also assumed that normalization by the background noise power is perfect.

The most common signal models employed in sonar analysis are the deterministic and
Gaussian-fluctuating signals. Spanning the two is the Rician signal [5, Sect. 7.5.3], for which
the instantaneous intensity is proportional to a non-central-chi-squared-distributed random vari-
able with two degrees of freedom,

2
T ~ X2 o0, 5
1+ ps XQv% )

where s [unitless| is the SNR after the coherent portion of detection processing (i.e., S%in [5,
Sect. 2.3]). The parameter p is the ratio of the Gaussian-random signal power to the total
signal power. Setting p = 1 produces a Gaussian-fluctuating signal so (5) simplifies to 7" being
exponential with mean 1 + s, whereas a deterministic signal is obtained when p = 0.

Similar to the traditional metrics, the results for a Gaussian-fluctuating signal in Gaussian
noise are accessible: the J-divergence for a single instantaneous intensity is simply

82

T= 1+s ©
This suggests that performance is proportional to SNR when it is large (e.g., for a matched filter)
and proportional to the square of SNR when it is small (e.g., a single bin in an energy detector).
Although forward models can be evaluated numerically for the other signal models, developing
approximations to this one-to-one non-linear mapping from SNR to J is straightforward (e.g.,
see those presented in Table 2, which are accurate to ~ (.1 dB). For example, an approximation
for the deterministic signal in Gaussian noise is

282 1 —|Sd]3 - 6.5|1'83
~ 1—-— 7
! 2+s[ eXp{ 140 ’ D
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Figure 1: J-divergence detection currency as a function of SNR for the most
common detection scenarios in Gaussian noise.

where Sgg = 10log;, s is the SNR in decibels. The validity of the approximation is demon-
strated in Fig. 1 where J-divergence is shown as a function of SNR for the deterministic and
Gaussian-fluctuating signals. Because the term in brackets in (7) tends to one at very high
and low SNR, the preceding 2s%/(2 + s) term drives the results at the extremes. This implies
performance at low SNR will be J ~ s?, which is the same as a Gaussian-fluctuating signal—
the determinism of the amplitude does not counter the deleterious effects of the noise. At the
other extreme, however, performance tends to J — 2s, which is the blue line in Fig. 1 and
represents the performance of a coherent matched filter (CMF). It is seen here that there is only
a vanishingly small penalty as SNR increases when using a QMF because the bulk phase of
a deterministic signal is unknown. This result also provides a compact explanation for why
Albersheim’s equation [6], which was derived for deterministic signals, can be used to obtain
DT for detecting Gaussian-fluctuating signals with energy detectors (the SNR in each bin is
small) but generally not for matched filters where the SNR in a single instantaneous intensity
is higher.

3.1. ENERGY DETECTORS AND MULTIPLE MEASUREMENTS

The forward models in (6), (7), and Table 2 represent the .J-divergence achieved from a
single instantaneous intensity. When a detector sums multiple independent instantaneous in-
tensities, as is the case for energy detectors and post-matched-filter integrators, the total .J-
divergence is the sum of that achieved by the individual measurements. The discussion here fo-
cuses on the energy-detector variants presented in [5, Sects. 9.2.5 & 9.2.6]. As noted in Sect. 2,
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summing J-divergences assumes the measurements are combined by an optimal detector. This
approach is appropriate in the rare cases where the optimal detector can be implemented and is
a good approximation when using an Eckart filter, which is only slightly sub-optimal.

In the more common case where the intensity samples are normalized by their noise power
before summing them (i.e., a noise-normalized energy detector; NN-ED), a better approxima-
tion is

J =My, (8)
where M is the number of independent intensities in the sum (M ~ time-bandwidth product)

and Jj is the J-divergence at the average-linear-quantity SNR. When converting this to deci-
bels, the performance is that achieved by a single instantaneous intensity plus 5 log,, M,

Jag = blogyy Jo + dlogy M [units: dB]. 9

This comports with our expectations for performance when detectors combine information
incoherently. In contrast to the traditional techniques (where this is only seen asymptotically
for large M in inverse models such as Albersheim’s equation), this relationship exists explicitly
in the forward modeling of .J-divergence for all M/ and greatly simplifies inverse modeling.

Table 2: Equations for forward and inverse modeling of J-divergence; all cases assume a back-
ground of Gaussian noise; errors in the approximations are generally less than 0.1 dB

Definitions
J = the linear-quantity J-divergence
Sag = 10log; s is the SNR [dB] in a single instantaneous intensity
DJ = single-intensity SNR [dB] required to achieve a detection currency of nge; = 5logyq J%

®(z) = the standard-normal cumulative distribution function

Gaussian-fluctuating signal
J=5%/(1+s)
DJ = 2345 — 3+ 10logy |1+ V1 +4- 10~/ /7]

Deterministic signal
- 252 1 —|S4—6.5|-83
I~ o [1 - EQXP{ *110 }]
es _ | ydes __ 1.8
DJ ~ 218 — 3 + 101ogy, [1 + 2~10*Jﬁa/10] +101logy, [1 ~0.08 exp{%}]

Rician signal [ mixture of above results using P = ®([log(p) — pur] /o) /®(—pr /o) ]
J & Poau + (1= P)Jper with i, =~ log (4.4 + 1050/10) & 7, =0.60 ( 2:10) 4 1.1

es des __
DJ ~ P DJgau + (1 — P)DJper with i, = — log [5 +0.5-10% /5] & 0, =030 (M) 112

3.2. INVERSE MODELING FOR THE DESIGN SNR

Particularly when combining multiple dissimilar measurements, models of PDM can be
complicated to evaluate and although those for PEM are less challenging, they need to be solved
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for the decision threshold. This has driven the use of inverse modeling after simplification of
the problem to fit tools such as Albersheim’s equation [6], which provides the SNR required to
achieve a desired (PDM, PFM) operating point when summing )/ independent envelopes con-
taining a deterministic signal in Gaussian noise. Albersheim’s equation is reasonably accurate
when summing intensity samples [7], which makes it popular for assessing energy detectors.

For simple cases, such as the Gaussian-fluctuating signal in Gaussian noise, the detection-
currency equivalent is obtained by solving the forward model in (6) for s and converting to
decibels, which produces a design SNR of

DJ =2J% — 3+ 10log,, [1 +V1+4- 1O—JSES/5J [units: dB], (10)
for a single instantaneous intensity, where I3 = 5log,, J% is a detection-currency specifica-
tion. DJ is a direct replacement for the DT (detection threshold) term in the sonar equation that
starts with a performance specification in .J-divergence detection currency (e.g., via Table 1).

As was done in the forward modeling, simple approximations to DJ were obtained for the
Rician and deterministic signals (see Table 2). These approximations require at most evaluation
of the standard normal CDF, ®(z). When summing M independent intensity samples, the
average design SNR achieving the performance specification is simply obtained by evaluating
DJ in (10) or Table 2 at J& — 5log,, M. These results make evaluation of the design SNR for
detecting the three basic signal models in Gaussian noise with an intensity-integrating detector
essentially as accessible as Albersheim’s equation.

Table 3: Comparison of design SNRs: DT and DJ [units: dB].

Signal Detector M Low-quality OP Medium-quality OP High-quality OP
DT DJasy DJnom DT DJasy DJnom DT DJasy DJnom

DET CMF 1 8.4 84 70 1277 127 130 165 165 17.0
DET QMF 1 9.4 9.9 88 132 137 139 169 17.1 175

GAU QMF 1 109 117 104 170 159 16.1 254  19.6 20.0
GAU NN-ED 2 7.8 89 1.7 127 13.0 132 18.8 166 17.1
GAU NN-ED 5 4.5 55 44 8.4 9.3 9.5 128 128 132
GAU NN-ED 10 23 31 21 5.8 6.6 6.8 9.5 100 104
GAU NN-ED 50 -20 -1.7 -25 0.7 1.2 1.4 34 4.0 4.4
GAU NN-ED 100 -38 -35 -43 -1.2 08 -0.7 1.3 1.8 2.1
GAU NN-ED 500 -76 -74 -82 52 50 49 3.0 -28 25
GAU NN-ED 10° -9.1 9.0 -98 -6.8 -6.7 -6.6 47 46 -43

4. EXAMPLE COMPARISON OF DESIGN SNR

To illustrate the similarities and differences between these approaches, the design SNRs
required to achieve the low, medium and high levels of performance described in Table 1 are
compared in Table 3. The values of DT were obtained by numerically inverting the PFM and
PDM equations. In contrast, DJ was evaluated using the equations in Table 2. The most direct
comparison is between DT and DJ,y, where the value of J§ was obtained from (PDM, PFM)
using the asymptotic ROC in (3). As expected, the larger disparity at small M vanishes as
M — oco. However, they are quite similar for the deterministic signal (DET) in the QMF and
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for the Gaussian-fluctuating signal (GAU) when M > 5 in the NN-ED. Given the inherent
inaccuracies in sonar modeling, an exact equivalence is not necessary, suggesting detection
currency is useful even when M < 5. The design SNRs labeled DJ,,,, (blue text) were obtained
using the nominal detection-currency specifications (i.e., 5, 8, & 10dB). Their similarity to DT
suggests that these qualitative performance levels will be useful in scenarios where a specific
operating point is not paramount or not easily modeled (e.g., owing to inherent inaccuracies).

5. CONCLUSIONS

An alternative method for evaluating sonar detection performance, based on the J-divergence
and described as a detection currency, has been proposed. Although its origins are more es-
oteric than the standard metrics, its application is easier than traditional methods, particularly
when systems exploit multiple dissimilar measurements. As an information theoretic measure,
it can be applied at different points in the signal and information processing chain, potentially
improving prediction of system-level performance. As a single scalar performance metric on a
decibel scale, this detection currency can be useful in optimizing signal processing algorithms
or sonar systems and simplifies explanation of detection performance to non-specialists.
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