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Abstract: This paper characterizes the mainlobe and sidelobe structure of the Multi-Tone Sinu-
soidal Frequency Modulated (MTSFM) transmit waveform’s narrowband Ambiguity Function
(AF) for active sonar applications. The MTSFMwaveform’s modulation function is represented
as a Fourier series. The Fourier coefficients form a discrete set of parameters that are modified
to synthesize waveforms with novel characteristics. The contour of the AF’s mainlobe is well
approximated as a coupled ellipse known as the Ellipse Of Ambiguity (EOA). The EOA param-
eters determine the mainlobe width in range and Doppler as well as the degree of coupling
between them. This coupling factor, known as the Range-Doppler Coupling Factor (RDCF),
determines whether a waveform is Doppler sensitive or Doppler tolerant. This paper derives
exact closed form expressions for the EOA parameters of the MTSFM’s AF. The MTSFM’s de-
sign coefficients allow for fine control of its AF mainlobe width in range and Doppler as well
as its RDCF. This fine control facilitates designing waveforms that can smoothly trade-off be-
tween possessing Doppler sensitive and Doppler tolerant characteristics. Additionally, this
paper introduces a method to control the sidelobe structure of the MTSFM’s Auto Correlation
Function (ACF) while maintaining the waveform’s AF mainlobe shape. This is achieved using
a numerical optimization technique that minimizes the ratio of ℓ2-norms of the ACF mainlobe
and sidelobe regions subject to constraints on the EOA parameters. Simulations demonstrate
the effectiveness of this optimization technique.
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1. INTRODUCTION

Waveform diversity, the ability to optimize waveforms to maximize system performance,
possibly in a dynamically adaptive manner, has been an active topic of research in the radar
community for over two decades [1]. This field of research has been enabled by the devel-
opment of several parameterized modulation techniques such as Phase-Coding (PC) and Fre-
quency Shift-Keying (FSK) [2] which facilitate the synthesis of waveforms with novel char-
acteristics. Waveform diversity has increasingly become a topic of interest to the active sonar
community with diverse sets of waveforms being employed for Multi-Beam Echo Sounding
(MBES) [3] and Multiple-Input Multiple Output (MIMO) sonar applications [4]. These efforts
highlight the need for continued development of parameterized waveform models to further
enable waveform diversity for active sonar systems.

Recently, the author developed the Multi-Tone Sinusoidal Frequency Modulated (MTSFM)
waveform as a novel parameterized FM waveform model [5]. The MTSFM waveform’s phase
and frequency modulation functions are composed of a finite Fourier series. The Fourier coef-
ficients representing the waveform’s instantaneous phase and frequency functions are utilized
as a discrete set of adjustable parameters. To date, most efforts have focused on the design of
Doppler sensitive MTSFM waveforms that possess a “Thumbtack-Like” Ambiguity Function
(AF). However, the parameterization of the MTSFM model suggests that a variety Doppler
tolerant designs should also be feasible.

This paper describes a method to jointly control theMTSFMwaveform’s AFmainlobe shape
and the sidelobe structure of its Auto Correlation Function (ACF). The AF mainlobe is charac-
terized using the Ellipse of Ambiguity (EOA) model. The MTSFM’s design coefficients allow
for fine control of its AF mainlobe width. This facilitates synthesizing waveforms that can
smoothly trade-off between possessing Doppler sensitive and Doppler tolerant characteristics.
Additionally, this paper demonstrates a numerical optimization technique that minimizes an
ℓ2 norm on the mainlobe and sidelobe regions of the waveform’s ACF subject to constraints
on the MTSFM’s EOA parameters. This allows for controlling the sidelobe structure of the
MTSFM’s ACF while maintaining the waveform’s AF mainlobe shape. The rest of this paper
is organized as follows: Section 2 introduces the MTSFM waveform model and the metrics
used to describe the AF mainlobe and ACF sidelobe structure; Section 3 demonstrates how the
MTSFM’s parameters can be utilized to shape its AF mainlobe and reduce ACF sidelobes via
several illustrative design examples; finally, Section 4 concludes the paper.

2. MTSFMWAVEFORM AND THE AMBIGUITY FUNCTION

In general, a basebanded FM waveform is expressed in continuous time as

s (t) =
rect (t/T )√

T
ejφ(t) (1)

where T is the waveform’s duration and φ (t) is its phase modulation function. The 1/
√
T

term normalizes the signal energy to unity. The waveform’s frequency modulation function
m (t) maps its instantaneous frequency as a function of time and is expressed as m (t) =
(1/2π) ∂φ(t)/∂t. The MTSFM waveform’s frequency and phase modulation functions are ex-
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pressed as a finite Fourier series

m (t) =
a0
2

+
L∑

ℓ=1

aℓ cos
(
2πℓt

T

)
+ bℓ sin

(
2πℓt

T

)
, (2)

φ (t) = πa0t+
L∑

ℓ=1

αℓ sin
(
2πℓt

T

)
− βℓ cos

(
2πℓt

T

)
(3)

where aℓ and bℓ are the Fourier coefficients and αℓ = aℓT/ℓ and βℓ = bℓT/ℓ are the waveform’s
modulation indices. The Fourier coefficients of the MTSFM waveform’s modulation function,
and correspondingly, the modulation indices of the waveform’s instantaneous phase, form a
discrete set of adjustable parameters that can bemodified to synthesize waveformswith a variety
of unique properties [5, 6]. The narrowband Ambiguity Function (AF) measures the response
of the waveform’s MF to its Doppler shifted versions and is defined as [7]

χ (τ, ν) =

∫ ∞

−∞
s (t) s∗ (t+ τ) ej2πνtdt (4)

where ν is the Doppler frequency shift. Lastly, the ACF is the zero Doppler cut of the AF
R (τ) = χ (τ, 0). There are a series of design metrics that characterize the mainlobe and side-
lobe structure of a waveform’s AF and ACF shape. These metrics are described below.

2.1. MAINLOBE STRUCTURE

TheAFmainlobe structure determines awaveform’s ability to estimate the range andDoppler
of a target and to resolvemultiple targets in range and Doppler. The AFmainlobe can be approx-
imated by a second order Taylor series expansion [7]. The EOA is the contour of the mainlobe
approximation at some height 1− ξ which is always a coupled ellipse and is expressed as

1− |χ (τ, ν) |2 = ξ = β2
rmsτ

2 + 2ρτν + τ 2rmsν
2 (5)

where β2
rms is the waveform’s RMS bandwidth and determines time-delay (range) sensitivity,

τ 2rms is the RMS pulse length which determines Doppler sensitivity, and ρ is the RDCF for the
AF mainlobe. The RMS bandwidth is expressed as [7]

β2
rms = (2π)2

∫ ∞

∞
(f − f0)

2 |S (f) |2df =
1

T

∫ T/2

−T/2

[φ̇ (t)]2 dt−

∣∣∣∣∣ 1T
∫ T/2

−T/2

jφ̇ (t) dt

∣∣∣∣∣
2

(6)

where f0 is the waveform’s spectral centroid ⟨f⟩, S (f) is the waveform’s Fourier transform,
and φ̇ (t) is the first time derivative of the waveform’s instantaneous phase. The RMS pulse
length term is expressed as [7]

τ 2rms = 4π2

∫
Ωt

(t− t0)
2 |s (t) |2dt (7)

where t0 is the first time moment ⟨t⟩ of the waveform’s complex envelope |s (t) |2 and is zero
for waveforms such as (1) that are even-symmetric in time. The RDCF ρ is expressed as [7]

ρ = −2πℑ

{∫
Ωt

ts (t) ṡ∗ (t) dt

}
= 2π

∫ T/2

−T/2

tφ̇ (t) dt (8)
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where ℑ{} denotes the imaginary component of the integral. The RMS bandwidth and RDCF
EOA parameters are solely dependent upon the frequency modulation function φ̇ (t). If the
waveform’s modulation function is known, β2

rms and ρ can be calculated in exact closed form
which along with τ 2rms provides full characterization of the waveform’s AF mainlobe structure
[7]. Furthermore, if the waveform’s modulation function is composed of a discrete set of param-
eters, those parameters can be optimized to design waveforms with specific EOA parameters
thus uniquely shaping the waveform’s AF mainlobe structure [6].

2.2. SIDELOBE STRUCTURE

This paper focuses specifically on the sidelobe structure of the ACF. Two of the most com-
mon metrics are the Peak-to-Sidelobe Level Ratio (PSLR) and the Integrated Sidelobe Level
(ISL) [1]. The PSLR is expressed as

PSLR =

max
∆τ≤|τ |≤T

{
|R (τ)|2

}
max

0≤|τ |≤∆τ

{
|R (τ)|2

} = max
∆τ≤|τ |≤T

{
|R (τ)|2

}
(9)

where ∆τ is the null of the ACF mainlobe thus establishing the ACF’s null-to-null mainlobe
width as 2∆τ . Note that the rightmost expression in (9) results from the assumption that the
waveform is unit energy and thus the maximum value of |R (τ) |2 is unity which occurs at τ = 0.
The ISL is the ratio of the ℓ2-norms of the mainlobe and sidelobe regions of the ACF expressed
as

ISL =

∫ T

∆τ
|R (τ)|2 dτ∫ ∆τ

0
|R (τ)|2 dτ

. (10)

Note that the integration is performed only over positive time-delays since the ACF is even-
symmetric in τ . A lower ISL corresponds to an ACF with lower overall sidelobe levels but
does not necessarily translate to a lower PSLR.

3. SHAPING THE MTSFM’S AF MAINLOBE AND SIDELOBE STRUCTURE

The MTSFM’s EOA parameters are expressed in terms of the Fourier coefficients in its
frequency modulation function as [5, 6]

β2
rms = 2π2

L∑
ℓ

a2ℓ + b2ℓ , (11)

τ 2rms =
π2T 2

3
, (12)

ρ = −2π2T
L∑

ℓ=1

bℓ
cos (πℓ)
πℓ

. (13)

It’s important to note several observations regarding the results shown in (11)-(13). First, as
with all rectangularly tapered waveforms, the Doppler sensitivity is proportional to the square
of the waveform duration T times a constant (π2/3). Second, both (11) and (13) are controlled
by the MTSFM’s coefficients. Lastly, the RDCF (13) is a function only of the odd harmonic
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coefficients in (2). This is consistent with the results in [7] describing how waveforms with
even symmetric modulation functions possess an AF mainlobe with RDCF of zero.

3.1. THE MTSFM’S AF MAINLOBE STRUCTURE - A SIMPLE DESIGN EXAMPLE

Consider the following design examples that synthesize MTSFM waveforms with two sine
Fourier coefficients b1 and b2 with an RMS bandwidth equality constraint. Using (11), the
second coefficient b2 can be expressed in terms of the first coefficient b1 as

b2 = ±

√(
β2
rms

2π2
− b21

)
. (14)

The RDCF ρ is expressed as

ρ = πT [2b1 − b2] = πT

[
2b1 ∓

√(
β2
rms

2π2
− b21

)]
. (15)

Figure 1 displays b2 and ρ as a function of b1. Note that ρ is normalized to ρ̃ = ρ/ (βrmsτrms) so
as to mimic a correlation coefficient. This normalized RDCF ρ̃ takes on the values−1 ≤ ρ̃ ≤ 1
where ±1 corresponds to an AF mainlobe that is perfectly negatively and positively coupled
respectively. The values of b1 and b2 that satisfy the RMS bandwidth equality constraint form
a circle and the corresponding RDCF values ρ̃ form a coupled ellipse. With only two MTSFM
coefficients, ρ̃ takes on all the values between ≈ ±0.8717. As shown in the Appendix, the L
MTSFM coefficients that maximize ρ̃ are

bℓ =
−
√
2βrms

2π

√∑
ℓ′

[
cos (πℓ′)
πℓ′

]2 cos (πℓ)πℓ
. (16)

The resulting ρ̃max using these optimal MTSFM coefficients for increasing L are shown in panel
(c) of Figure 1. The MTSFM is capable of possessing essentially any realizable RDCF −1 <
ρ̃ < 1. Waveforms with variable RDCF values could have practical applications in active sonar
systems. Doppler sensitive waveforms with long duration require a large number of Doppler
shifted matched filters to process Doppler shifted target echoes. This can substantially increase
the complexity of the sonar receiver [8]. Utilizing a waveform with variable Doppler sensitivity
could smoothly trade off between Doppler sensitivity and receiver complexity.

3.2. CONTROLLING THE MTSFM’S ACF SIDELOBE STRUCTURE

The ACF sidelobes of the MTSFM can be reduced while maintaining its AF mainlobe struc-
ture. This is done via optimizing the ISL metric subject to constraints on the RMS bandwidth
and RDCF of an initial MTSFM waveform. Formally, the optimization problem is stated as

min
bℓ

ISL ({bℓ}) s.t. (1− δ) β(0)
rms ≤ βrms ≤ (1 + δ) β(0)

rms, (17)

(1− ϵ) ρ(0) ≤ ρ ≤ (1 + ϵ) ρ(0)
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Figure 1: MTSFM coefficients that satisfy the RMS bandwidth equality constraint (a), the cor-
responding RDCF values ρ̃ of these MTSFM coefficients (b), and the optimal ρ̃max for
a MTSFM with L harmonics in its modulation function (c).

where β(0)
rms and ρ(0) are the initial seed waveform’s RMS bandwidth and RDCF respectively

and δ = 0.1 and ϵ = 0.05 are unitless bound parameters. The following simulation utilizes
four waveforms whose initial Fourier coefficients are listed in Table 1. The waveform coeffi-
cients and pulse-lengths were scaled such that the resulting waveforms’ RMS bandwidths were
equal to that of an LFM with a time-bandwidth product of 200. Note that since waveform III’s
RDCF was 0.0, the RDCF constraint was not used during optimization. These seed MTSFM
waveforms were zero-padded with an additional 126 Fourier coefficients to further increase the
degrees of freedom in the optimization problem. This has been shown to produce waveforms
with lower ACF sidelobes [5]. The optimization problem in (17) was solved using MATLAB’s
optimization toolbox and the resulting waveforms’ ISL and PSLR values for these simulations
are shown in Table 2. Also shown in Table 2 are the ratios of the optimized waveforms’ β2

rms

and ρ to that of the initial waveforms denoted as βrms/β
(0)
rms and ρ/ρ(0) respectively. All four

optimized waveforms exhibit clearly lower ISL and PSLR values. Additionally, the AF main-
lobe EOA parameters of all four waveforms stay relatively close to the values of the initial seed
waveforms.

4. CONCLUSION

The closed form expressions for the MTSFM waveform’s EOA parameters allows for fine
control of its resulting AF mainlobe shape. The Fourier coefficients of the MTSFM specifically
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allow for finely adjusting the RDCF. This in turn facilitates designing MTSFMwaveforms with
adjustable Doppler tolerance introducing a design tradeoff between receiver complexity and
Doppler resolution. Additionally, the sidelobe levels of the resulting waveform’s ACF can be
reduced by minimizing the ISL. The RMS bandwidth and RDCF constraints ensure that the
resulting optimized waveform will largely retain its AF mainlobe shape. Future efforts will
focus on deriving the MTSFM’s broadband AF EOA parameters and extend the optimization
routines to shape the broadband AF sidelobes over regions in the range-Doppler plane.

Waveform
√
2πb1/βrms

√
2πb2/βrms ρ̃

I 0.8944 -0.4473 0.8717
II 0.1292 -0.9916 0.4873
III -0.4472 -0.8944 0.0000
IV -0.8944 0.4473 -0.8717

Table 1: List of MTSFM waveforms with their normalized design coefficients b1 & b2 and their
normalized RDCF ρ̃ taken directly from Figure 1.

Waveform Init./Opt. ISL (dB) Init./Opt. PSLR (dB) βrms/β
(0)
rms ρ/ρ(0)

I -0.01/-15.04 -8.89/-28.44 1.099 1.011
II 3.91/-10.86 -6.19/-21.67 1.099 0.953
III 0.10/-11.74 -11.22/-26.73 1.099 ——-
IV 2.54/-14.66 -8.0/-30.44 1.099 1.018

Table 2: List of the performance characteristics of the initial and optimizedMTSFMwaveforms.
The optimized MTSFM waveforms possess substanitally lower PSLR and ISL values
than the initial seed waveforms while largely retaining their AF mainlobe shape.
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6. DERIVATION OF MTSFM COEFFICIENTS THAT OPTIMIZE ρ WITH AN RMS
BANDWIDTH EQUALITY CONSTRAINT

The waveform design problem is to find the set of MTSFM coefficients bℓ that maximizes
the RDCF ρ subject to an equality constraint on the waveform’s RMS bandwidth β2

rms. Noting
that maximizing ρ is equivalent to minimizing −ρ, the optimization problem is formally stated
as

min
bℓ

{
2π2T

∑
ℓ

bℓ
cos (πℓ)
πℓ

}
s.t. 2π2

∑
ℓ

b2ℓ = β2
rms. (18)

Since (18) imposes an equality constraint, it can be solved using the method of Lagrange mul-
tipliers. The Lagrangian function is expressed as

L (bℓ, λ) = 2π2T
∑
ℓ

bℓ
cos (πℓ)
πℓ

+ λ

(
2π2

∑
ℓ

b2ℓ − β2
rms

)
. (19)

Taking the gradient of (19) with respect to bℓ and setting equal to 0 results in the following
expressions for each coefficient bℓ in terms of λ

bℓ =
−T
2λ

cos (πℓ)
πℓ

(20)

Inserting (20) back into the RMS bandwidth constraint results in the expression and solving in
terms of λ yields

λ =
πT√
2βrms

√√√√∑
ℓ

[
cos (πℓ)
πℓ

]2
(21)

From here on, the
√∑

ℓ [cos (πℓ) /πℓ]
2 will be represented in terms of the variable ℓ′ rather than

ℓ to avoid confusion with the indices of the MTSFM coefficients bℓ. Inserting the expression
for λ (21) back into the expression for bℓ (20) results in the MTSFM design coefficients bℓ that
maximize the RDCF ρ.

bℓ =
−
√
2βrms

2π

√∑
ℓ′

[
cos (πℓ′)
πℓ′

]2 cos (πℓ)πℓ
. (22)
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