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Abstract: The acoustic backscatter strength (target echo strength, TES) of underwater objects, 
which is important for sonar applications, can be determined by different numerical methods 
(boundary element method, finite element method, ray tracing and approximate methods). 
These are capable of considering taking into account both the hull and, to some extent, the 
internal structures of the object under consideration, although the computational effort re-
quired increases significantly with higher complexity. In order to make a fast prediction for the 
radiation behavior of mostly concave objects, e.g., the outer hull of a submarine, the Kirchhoff 
high-frequency approximation (KIA) method has been widely used since the middle of the last 
century, which uses optical analogies and is primarily suitable for high frequencies. The exten-
sion of the instruction sets of current CPUs allows the parallel execution of floating-point op-
erations (Advanced Vector Extensions) with 8 or 16 real numbers within one machine instruc-
tion. In the context of the research project "Computational Acoustics", an existing conventional 
code was optimized accordingly using the AVX2 variant. In this presentation, the fundamentals, 
results, and computation times for a very fast variant of the Kirchhoff high-frequency approxi-
mation (KIA) are presented and compared with results of other methods. 
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1. INTRODUCTION 

The acoustic backscattering strength (target echo strength, TES) corresponds to the ratio of 
incident to reflected sound intensity [1]. In order to obtain comparable values, a sound source 
is placed in the far field of the object and then the backscattering strength is determined, which 
is calculated back to a distance of one meter from the object. 

The boundary element method (BEM) is suitable for this purpose, since the sound field re-
flected by the object to be examined should in theory be a free field. Accordingly, only the 
surface of the object itself must be discretized. Here, the rule of thumb, which states that at least 
six elements per wavelength should be used, should be observed. 

The computational effort therefore increases extremely for high frequencies (more than 300 
kHz occur in sonar technology). Significant runtime reduction can be achieved by various high-
frequency approximations. One way to circumvent the rule of thumb using arbitrary coarse 
surface elements that depend only on the geometry of the object of interest was described in 
[2]. This method can be further accelerated using current CPU technologies whose instruction 
sets allow parallel execution of floating-point operations (Advanced Vector Extensions, [3]) 
with 8 or 16 real numbers of single precision within one machine instruction. 

2. BASIC FORMULATION 

The backscattered pressure from the object using the Kirchhoff method for the monostatic 
case is formed according to the following formula (full details see [2], eqns. (2) … (7)): 

𝑝௦ ൎ
𝑝଴

2𝜋
ඵ

𝑅eି௜ଶ௞|௦⃗|

|𝑠|ସ ሺ𝑖𝑘|𝑠| ൅ 1ሻ𝑠 ∙ 𝑛ሬ⃗ dΓ
୻೔೗೗

 (1)

with  𝑒௖ Center of the element 
 𝑒௡ 𝑛. vertex (corner point) of the element (𝑛 ൌ 1 … 3) 
 𝑝௦ backscattered sound pressure 
 𝑝଴ Amplitude of the incident sound pressure 
 𝑅 Reflection coefficient (complex), frequency and angle dependent 
 𝑘 frequency dependent wave number (𝑘 ൌ 𝑐/𝑓) 
 𝑟 Source = evaluation point (for monostatic calculation) 
 𝑟଴ normalized vector of 𝑟 
 𝑠 Distance vector between element center and source point ● 
 𝑛ሬ⃗  Normal vector of the element 
 Γ௜௟௟ “Illuminated” part of the surface 

 
Fig. 1: Backscattering for one triangle (vector scheme for the monostatic case) 

Due to the large distance between element and evaluation point (far field conditions), the 
vectors 𝑟 and 𝑠 are nearly parallel in the monostatic case.  

In order to perform the integration according to Eq. (1), the triangle must be parameterized. 
The necessary parameters for this are λ and µ, they run through the values from 0 ... 1. 
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Using the approximations described in [2], eqns. (8) to (10), lead to the following integral 
equation for the monostatic case: 

𝑝௦ ൎ
𝑖𝑘𝑅𝑝௜௡௖

2𝜋𝑟ଷ ඵ eି௜ଶ௞ሺ௥ି௘⃗భ∙௥⃗బିሺ௖భି஛ఓ௖మሻሺ𝑟଴ ∙ 𝑛ሬ⃗ ሻλ dλ d𝜇
∆

 (2)

Eq. (2) describes the backscatter strength for an “illuminated” triangle at an arbitrarily high 
frequency and gives the following concrete formulation per surface element after discretization: 

𝑝௦ ൌ
𝑝௜௡௖e௜ଶ௞௥

𝑖8𝜋𝑟ଷ ∙
𝑅ሺ𝑟଴ ∙ 𝑛ሬ⃗ ሻe௜ଶ௞௘⃗భ∙௥⃗బ

𝑐ଶ
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e௜ଶ௞ሺ௖భା௖మሻ െ 1
𝑐ଵ ൅ 𝑐ଶ

െ
e௜ଶ௞௖భ െ 1

𝑐ଵ
቉ (3)

with   𝑐ଵ ൌ ሺ𝑒ଶ െ 𝑒ଵሻ ∙ 𝑟଴, 𝑐ଶ ൌ ሺ𝑒ଷ െ 𝑒ଶሻ ∙ 𝑟଴ 

2.1. Optimizations implemented 

In Eq. (3), 4 scalar products (marked red) and 6 sine or cosine calculations (from the complex 
exponential functions, marked green) are required per element. To achieve the best computa-
tional performance using AVX2 intrinsics [3], the following practices were implemented: 

a) Re-sorting of all used geometric parameters into separate X, Y and Z fields 

b) Pre-calculation of all occurring complex reflection factors and indexed access depend-
ing on the incident angle 

c) Blockwise multithreaded calculation of all requested field points for 8 elements at a 
time (the AVX2 commands can process 8 single precision values simultaneously) 

d) Fast computation of 
ሺୣ೔ೣିଵሻ

௫
ൌ ୡ୭ୱሺ௫ሻିଵ

௫
൅ 𝑖 ୱ୧୬ሺ௫ሻ

௫
 by an optimized AVX2-based function 

e) Optimal utilization of the CPU cache through block-adapted memory access 

3. MODEL USED 

The outer hull of the BeTSSi [4] model (Fig. 2), consisting of 178,000 or 713,000 triangular 
elements, was used as the test structure. The dimensions are 60 × 11 × 7 m³ (W×H×D). 

 

Fig. 2: BeTSSi model (outer hull only) 

This model contains convex parts e.g. at the rudders. These can cause multiple reflections. 
Therefore, differences of alternative solution methods can be recognized. 

4. RESULTS 

For all calculations in this publication, a rigid boundary condition was specified in order to 
keep the solution times within reasonable limits, although other conditions may also be used 
(reflection coefficients, shells [5], etc.) depending on the solution method applied. 

For the comparisons, all calculations were performed on the same workstation (AMD EPYC, 
3.2 GHz, 32 cores, 64 threads, 512 GB main memory) under MS Windows 10 Prof. (64 bit). 
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4.1. Surface pressure and bistatic target echo strength (f = 3 kHz) 

To illustrate the differences in the pressure profile between different methods, fig. 3 show 
its real part ℜሺ𝑝௦ሻ on the surface of the finer discretized model at a frequency f = 3 kHz (sound 
incidence at αasp = 55°, αelev = 10°, see arrow), the range of values shown covers ± 3 N/m². 

BEM / MLFMM 
Δtsolve:  124 s 

Kirchhoff 
Δtset: ≈ 0 s 

Plane Wave 
Approximation 
Δtset: ≈ 0 s 

Fig. 3: Surface pressure ℜሺ𝑝௦ሻ for the BEM, KIA and PWA, f = 3 kHz 

The matrix-based BEM solution represents the “reference” and was calculated using the 
Multi-Level Fast Multipole Method (MLFMM, [6]) due to the size of the problem. Since the 
pressure is only set in the approximation methods, this time cost (Δtset) can be neglected. 

With the Kirchhoff solution, the "unilluminated" elements are clearly visible, while in the 
plane-wave approximation (PWA, [7]) the pressure pattern is smoother but has a slightly lower 
amplitude. The differences within the pressure profile in the areas with reflections (under the 
front rudder, at the tower and the rear rudder) between the BEM and the approximation methods 
are clearly visible in the enlarged sections. 

Fig. 4 shows the polar pattern of the bistatic TES based on the results given above. 

 

Fig. 4: TES, bistatic, f = 3 kHz, αasp = 55°, circle, XY plane (0.2° steps, 1.801 points) 

Despite the differences in the pressure profile on the surface, the TES profiles agree well, 
only the PWA is slightly lower within the maxima. 
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4.2. Target echo strength (monostatic, f = 1 kHz, semi-circle, 180°) 

Figs. 5 and 6 show the results of monostatic calculations for the frequency f = 1 kHz (wave 
length λ = 1.5 m, λ/6 = 0.25 m) in the XY plane (0° ... 180°, step width 0.1°, 1,801 evaluation 
points). The variant with 178,000 elements was used (edge length: approx. 0.14 m) to allow a 
monostatic BEM calculation with multiple right sides (memory requirement: approx. 243 GB). 

 

Fig. 5: TES, monostatic, Kirchhoff methods only, f = 1 kHz 

In comparing the three Kirchhoff-based methods, the plots are almost identical, but the dif-
ferences between the solution times are significant. For the third solution (CMA), which was 
calculated with a commercial application, linear approach functions were used for the integra-
tion and thus significantly more computing time was required. 

Comparing the results from the BEM and our ray tracing method (Fig. 6, [8]), the results 
differ somewhat more, especially in the “quieter” range between 135° and 180° and around 0°, 
but still well usable.  

 

Fig. 6: TES, monostatic, comparison with BEM and ray tracer, f = 1 kHz 

However, it should be noted that the solution time for the "reference solution" BEM is com-
paratively very high. Table 1 shows the factors for the required computation times, related to 
the optimized Kirchhoff variant. 

Kirchhoff 
optimized 

Kirchhoff Raytracer 
Kirchhoff
CMA lin. 

BEM 

1 140 3,050 12,200 108,000 

Table 1: Factors of the computation time, f = 1 kHz 
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a) 0.064 s (KIA, optimized)
b) 8.91 s (KIA, const.)
c) 780 s (KIA, CMA, linear)
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a) 0.064 s (KIA, optimized)
b) 6,940 s (BEM)
c) 195 s (Raytracer, B/E)
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4.3. Target echo strength (monostatic, f = 8 kHz, semi-circle, 180°) 

Figs. 7 and 8 represent the results of monostatic calculations for the frequency f = 8 kHz 
(wavelength λ = 0.188 m, λ/6 = 0.032 m). At this frequency, the rule of thumb “six elements 
per wavelength” is violated (edge length: approx. 0.14 m), so that the pressure gradients per 
element can no longer be reproduced precisely and the results are therefore inaccurate. 

 

Fig. 7: TES, monostatic, f = 8 kHz, applicable solutions 

The comparison between the optimized KIA, the raytracer and the commercial application 
also shows a very good agreement here. 

However, in the commercial application (CMA), biquadratic approach functions had to be 
selected in order to obtain a qualitatively comparable result with the edge length used. The 
optimized KIA method has no problems here yet. 

Fig. 8 gives the results of the other available solution methods. 

 

Fig. 8: TES, monostatic, f = 8 kHz, other solutions 

It is clearly visible that the solutions of these methods are no longer usable for this higher 
frequency, since they provide insufficient results. Table 2 shows the factors for the required 
computation times at f = 8 kHz. 

Kirchhoff 
optimized 

Kirchhoff Raytracer 
Kirchhoff 
CMA lin. 

Kirchhoff 
CMA quad. 

Kirchhoff 
CMA biquad. 

BEM 

1 120 3,050 12,200 20,300 50,625 108,000 

Table 2: Factors of the computation time, f = 8 kHz 
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a) 0.064 s (KIA, opt.)
b) 195 s (Raytracer, B/E)
c) 3,240 s (KIA, CMA, biquad.)
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a) 0.064 s (KIA, opt.)
b) 7.5 s (KIA, const.)
c) 1,302 s (KIA, CMA, quad.)
d) 6,940 s (BEM)
e) 780 s (KIA, CMA, linear)
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4.4. Target echo strength (monostatic, spherical section, averaged) 

Finally, the results of monostatic calculations for a spherical section (αasp = 0°...180°, αelev = 
± 20°, step width 0.2°) will be shown. The calculations were performed for 11 frequencies (f = 
2.7 … 3.3 kHz) and the results given were averaged for all 181,101 evaluation points. 

 

 

Fig. 9: TES, spherical section, faver = 3 kHz, KIA and BEM, averaged over 11 frequencies 

The qualitative and quantitative agreement of both results in the relevant areas is surprisingly 
good and has only small differences in the regions with low backscatter strength. The calcula-
tion times with a factor of approx. 10,000 speak for themselves. 

For clarification, Fig. 10 shows the TES pressure profile in the far field on the imaging sur-
face used. 

 

Fig. 10: TES, spherical section, faver = 3 kHz, KIA, averaged over 11 frequencies 
3D projection 
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5. SUMMARY AND OUTLOOK 

This paper illustrates the advantages that can be achieved by re-evaluating and optimizing 
"older" solution methods. 

The performance of the optimized AVX-Kirchhoff variant clearly outperforms the "conven-
tional" variant with identical computational results and shows good to very good quality com-
pared to other solution methods and commercial applications for target predictions. 

However, depending on the boundary conditions and geometrical properties used, the results 
may show errors, since the method cannot consider certain acoustic effects, e.g. diffraction or 
multiple reflections (for details see [9]). 

First calculations with an AVX512 variant of the method, which supports the processing of 
16 floating point values per machine instruction, show a further performance advantage of about 
25 to 50% compared to the AVX2 variant. 

The next step is to test the suitability of the method as a preconditioner for iterative solvers, 
also when using variable reflection coefficients (shell layers). 

Furthermore, it will be investigated whether the other implemented methods, such as the 
MLFMM or the ray tracing method, can also be optimized by AVX-based adaptations. 

Porting the method to GPU HPC systems, which have significantly more computational 
power due to their large number of computational cores, will also be investigated, e.g., to enable 
a form of "real-time simulation". 
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