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Abstract: Deep learning (DL) has gained popularity within the active sonar community due
to the ability to learn complex non-linear relationships between the input features and the la-
bels through a data driven approach. The DL models have led to significant improvements in
automatic target recognition and seafloor texture understanding with synthetic aperture sonar
(SAS). Most of the DL models reported in literature are deterministic and do not provide esti-
mates of uncertainty of their predictions limiting the utility for the downstream tasks such as
ATR and change detection. In this work, we demonstrate the ability to quantify uncertainty in
deep learning predictions by utilizing Bayesian Neural Networks, in this case via variational
inference. We introduce and compare several state-of-the art Bayesian methods (including vari-
ational inference) on the task of classifying imaging artifacts in SAS. We conduct this on a novel
dataset developed for this classification task through introduction of physical perturbations in
the image formation stage, namely : 1) sound speed error of 40 m/s, 2) navigation error through
perturbation in yaw of 0.35° and 3) Gaussian noise over the imaging channels prior to pulse
compression (lowering the average image SNR to 5 dB). Overall, we demonstrate that our best
model, a mean-field variational inference via flipout ResNet architecture, achieves 92% ac-
curacy with calibrated uncertainty. By rejecting 10% of the data with highest uncertainty we
achieve additional 4% improvement in accuracy.

Keywords: Synthetic Aperture Sonar, Bayesian Deep Learning, Machine Learning, Active
Sonar, Imaging Artifacts
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1. INTRODUCTION

Naval mines pose a significant threat to both civilian and military vessels. To mitigate this
risk, current mine countermeasure operations rely on underwater unmanned vehicles (UUVs)
to map the ocean floor with acoustic sensors, such as synthetic aperture sonar (SAS) and incor-
porate automatic target recognition (ATR) to detect and classify mine-like objects.

SAS image quality is often affected by the dynamic nature of the ocean environment and the
imprecision of navigational instruments. Additionally, high-quality labeled data is scarce, with
much of the data stored in databases being of unknown quality and unsuitable for algorithmic
consumption. In this work, we introduce a novel approach to image quality assessment using
Bayesian neural network classification, along with a new dataset specifically designed for this
application.

Deep learning (DL) models, built using neural networks, have seen increasing use in ATR
systems in recent years, thanks to their ability to model complex, non-linear relationships be-
tween input features and labels. However, most DL models reported in the literature are deter-
ministic, providing limited utility for downstream tasks such as ATR and change detection, as
they do not offer estimates of uncertainty.

To overcome this limitation, we propose the use of Bayesian neural networks with variational
inference (VI), which introduces parameters for uncertainty in addition to the usual parameters
used for classification. By analyzing uncertainty, operators can identify areas for improvement
and prioritize data samples that require human verification. Furthermore, by monitoring trends
in uncertainty and model correctness, Bayesian neural networks can become more explainable
than deterministic neural networks, increasing reliability and trust in the system.

Our proposed method was evaluated using physically perturbed SAS data, using three differ-
ent image artifacts, and achieved high accuracy in classification. By incorporating uncertainty
estimates, we were able to identify the most problematic areas of the dataset, leading to the
development of new labeling strategies. Furthermore, our approach provides an interpretable
and explainable framework, allowing for increased trust and confidence in the system.

2. BACKGROUND

One of the major limitations of deterministic machine learning techniques is overconfidence
in inference. From a practical perspective, regardless of whether these models were trained on a
specific class distribution or not, they will predict a class for out-of-distribution samples (class
not present in initial training). The user has no indication from the model that it has encountered
an out-of-distribution sample and that a result should not be trusted. In contrast, Bayesian
machine learning techniques provide an estimate of uncertainty, along with a classification of
the samples presented on the input of the model.

Bayesian neural networks incorporate an a priori probability distribution, p(ω), over the
weights p(ω | D), ω ∈ Ω, where Ω represents the set of all weights (including biases) of a
neural network architecture andD is the dataset. A neural network model,M, is parameterized
by the neural network weights ω, and a supervised learning dataset is D = {(xi, yi)}Ni=1, where
xi ∈ Rd and yi ∈ {1, 2, . . . , C} are the ith input and label respectively. N denotes sample size,
d is the dimension of the input feature space and C is the number of classes. The optimization
problem to solve with Bayesian inference is:
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p (y∗|x∗,D) =

∫
Ω

p (y∗|x∗, ω) p (ω|D) dω, (1)

where x∗ is a new input feature vector (e.g. test data), and y∗ is the model prediction or infer-
ence [1].

The solution to Eq. 1 is intractable because it would require integration over the infinite
feature space [2, 3]. VI focuses on an optimization technique to approximate p (ω|D), the pos-
terior, by finding an approximation, qθ(ω) ≈ p (ω|D) indexed by a variational parameter θ via
an optimization process.

We therefore try to minimize the Kullback-Leibler divergence between qθ(ω) and p (ω|D).
It can be shown that the resulting loss function for VI becomes the objective of minimizing the
negative ELBO loss [2]:

Lq = KL(qθ(ω) || p(ω))− Eq [log p (D|ω)] , (2)

where E represents the expected value and KL is the Kullback–Leibler (KL) divergence. The
Eq [log p (D|ω)] term represents the negative log likelihood loss and the KL term is a penalty
imposed based on distance to the posterior. For this work, a factorized Gaussian distribution is
assumed for each weight, characterized with the mean and standard deviation per weight.

During inference neural network weight’s distributions are sampled several times to produce
a prediction. Inferences are combined through Bayesian model averaging [1]:

p̄(y∗ | x∗) = Eq(θ)p(y
∗ | x∗) ≊ 1

T

T∑
t=1

p(y∗ | x∗, ωt), (3)

where ωt ∼ qθ(ω) to yield a final prediction. However, analysis of the ensemble of inferences
can produce important information about the uncertainty of the model. Uncertainty can be
quantified by predictive entropy which measures the average amount of information contained
in the predictive distribution and is given by:

Hp(y
∗ | x∗) = −

∑
c

p̄(y∗ = c | x∗) log p̄(y
∗ = c | x∗)
logC

(4)

where C represents all possible classes [1].
There are many different Bayesian methods and only a few were chosen for analysis and

comparison. First, we used a deterministic model base as a reference solution. For the Bayesian
methods we showcase performance of: MC Dropout [3], flipout [4], reparametrization [2], and
Laplace approximation [5]. These methods were selected for their ease of implementation,
popularity in literature, and their unique features.

MC Dropout is a technique to approximate distributions over a model’s weights, ω, through
the use of common regularization techniques: dropout and L2 regularization [3]. Intuitively,
dropout introduces a Bernoulli distribution over weights with probability pdrop that was set in
all of our experiments to 0.2. Unlike deterministic models, dropout layers remain active for
inference. The use of a Bernoulli variable over the dropout probability creates a variance of
inferences that can be averaged using Eq. 3 to predict the class [3].

The Laplace approximation [5] uses aGaussian distribution for a trained deterministicmodel’s
weights, θ0. Themean of this distribution is equal to the vector of the deterministic weights itself
and the variance of the distribution is approximated using a second-order Taylor series approx-
imation of the log posterior, log(p(θ|D)), around θ0. Assuming a Gaussian distribution over
weights, the covariance matrix Σ can be approximated through Taylor series expansion as [5]:
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Σ = f ′′(θ0)
−1
. (5)

where f is the neural network transfer function. Practically, the curvature of the weight distri-
bution is equivalent to the inverse of the average Hessian matrix. The form of the Gaussian is
N(θ0, H̄

−1) where H̄ is the average Hessian matrix. The Hessian is challenging to compute,
so it is often derived from the Fisher matrix, F . The Fisher matrix is the expectation of the
squared gradients and the Hessian can be approximated with the diagonal Fisher matrix [5] .
Once the Gaussian for θ is formed, we use Bayesian Model Averaging (Eq. 3) to compute the
uncertainties [5].

Rather than sampling from each weight, the local reparameterization technique [2] samples
from the pre-activation neurons rather than the neurons themselves. This reduces the variance of
the weight distributions and significantly reduces the computational power required. Assuming
the weights are a factorized Gaussian, then the posterior of the activation functions are also a
factorized Gaussian [2]. We can sample directly from the activations by using their implied
Gaussian distribution and utilize Eq. 3.

To create the Gaussian weight term, we add ϵ such that ϵ = N(0, 1) as below:

wi,j = µi,j + σi,jϵi,j. (6)

This creates a Gaussian distribution over the weights and can be sampled and modeled with
uncertainty. Assuming an input feature matrix A and an activation matrix B = WA, whereW
is the corresponding weight matrix, we can see

qθ(wi,j) = N(µi,j, σ
2
i,j), ∀wi,j ∈ W −→ qθ(bm,j|A) = N(γm,j, δm,j), (7)

where γm,j =
∑L

i=1 am,iµi,j and δm.j =
∑L

i=1 a
2
m,iσ

2
i,j with am,i and bm,j being the elements

of the matrix A and B respectively. From this, we can sample directly from the activations by
using their implied Gaussian distribution: bm,j = δm,j +

√
γm,jζm,j where ζ = N(0, 1) [6].

This is a more computationally efficient route than sampling from each of the weights, but it
also leads to a lower variance. This is because there is only one sampled noise term (the neuron
activation) vs a different random noise term for each of the weights influencing the gradient [2].
Because we are taking ζm,j from a normal distribution, we can use Bayesian model averaging
as shown in Eq. 3 to obtain probabilistic results from the model.

The local reparameterization trick is also used in flipout, but without the pseudo-random
variable technique used in flipout, the resulting Hessian matrix from the summation of all the
neuron values tends to be highly correlated. This can lead to poor optimization and slower
training.

When adding stochasticity to a model’s weights or activation function, it is often computa-
tionally easier to apply the same perturbation to all weights in a mini-batch. This is convenient,
and necessary for deeper models, but it violates one of the key assumptions that each weight is
uncorrelated from each other. Flipout attempts to resolve this issue by decorrelating the pertur-
bations in the weight values in each mini-batch [7], and this effectively leads to a much lower
variance across averages of a mini-batch in optimization. In this work we use Gaussian dis-
tribution assumption over weights of the neural network for both reparametrization and flipout
models. The flipout technique makes two key assumptions: 1) the perturbations of each weight
are independent, and 2) The perturbation distribution is symmetric around zero.

For a distribution q(θ) that follows these assumptions, we can assign the base perturbation
rate as ˆ∆W = σi,jϵi,j from Eq. 6. As a result of these assumptions, we can change the sign of
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ˆ∆W without changing the loss gradients. This allows us to compute a new perturbation rate,
∆Wn where rn and sn are random vectors sampled uniformly from ±1 [7].

∆Wn = ˆ∆W ∗ rnsTn (8)

By using Eq. 8 to alter the individual weights of a neural network within a mini-batch, a
much lower variance can be achieved across averages of a mini-batch because the noise is not
all in the same [7]. Because flipout relies on matrix multiplication, it incurs additional compu-
tational cost, but this operation can be performed in parallel since each matrix multiplication is
independent [7].

For this project, we used a ResNet 20 architecture [8]. Applications have demonstrated that
both ResNet architectures [8] and custom CNN models can work well in Bayesian configura-
tions [1] with bothMCDropout and flipout approaches. Flipout convolution and reparametriza-
tion convolution layers were implemented utilizing the TensorFlow Probability library [9]. We
constructed ourMCDropout models by placing dropout layers after each activation layer within
the residual block in the original deterministic model.

3. EXPERIMENTS

The classification task consisted of recognizing whether an image was of good quality (no
artefact), or was corrupted by one of three three types of errors introduced during beamforming,
which are described below. For this classification task we developed a novel dataset through
introduction of physical perturbations in the image formation stage. The data was collected by
FFI’s HUGIN-HUS AUV [10], equipped with a HISAS interferometric SAS. To ensure diver-
sity of the collected data, experiments were conducted over five different areas with varying
terrain profiles and varying unknown seafloor types. The SAS center frequency in the experi-
ments was 100 kHz with a bandwidth of 30 kHz, vehicle altitude was between 15 and 30 meters
and theoretical resolution was approximately 3.5×3.5cm. The SAS images were constructed
following the approach outlined in [11] using the back-projection algorithm taking into account
sidescan bathymetry and navigation correction.

In order to introduce realistic artifacts in SAS imagery, we introduced physical perturbations
in the back-projection stage of image formation to produce a degraded image. In this work
we considered the following perturbations: 1) sound speed error of 40 m/s, 2) navigation error
through perturbation in yaw of 0.35° and 3) Gaussian noise over the imaging channels prior
to pulse compression (lowering the average image SNR to 5 dB). A description of how these
perturbations impact image quality can be found in [12].

In this study we utilized a total of 25 SAS scenes. The data creation strategy is as follows:
1) Break SAS image into 1500x1500 non-overlapping regions. 2) Assign the first two regions
as test, assign 3rd and 4th region as validation and assign the rest of the regions to train data. 3)
Break test and validation sub-regions into 300×300 non-overlapping pixel patches. 4) Break
training region per image into 300×300 patches such that they are 50% overlapped in each
dimension to maximize the amount of data available for training. 5) Combine all of the test,
validation and training patches into test, validation and training datasets. Overall, such an ap-
proach produced a training dataset per strategy of 84k samples and 5k validation and testing
samples each.

For a multi-class classification task, we used accuracy (Acc) and F1-score as the main met-
rics. For Bayesian deep learning models the commonly used model selection metric is the mean
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negative log likelihood (MNLL):

Acc =
TP + TN

TP + TN + FP + FN
, F1 =

2 · Prec ·Rec
Prec+Rec

, MNLL = − 1

N

∑
log(p(xc))

(9)

where TP and TN are true-positives and true-negatives, FP and FN are false-positives and false-
negatives,N is the number of samples in the test dataset, and p(xc) is the probability the model
assigns to the true class label. The MNLL is used for Bayesian model selection and provides
an indication of how close a trained model is to the true (underlying) distribution.

4. RESULTS

We show performance results of trained models in Table 1 in terms of Accuracy and MNLL.
If we use the deterministic model as a baseline performance reference, the model has achieved
good skill on the test dataset as quantified by 90.2% accuracy. Relative to the deterministic
model, Bayesian model architectures vary±3% in accuracy where the lowest performingmodel
was Laplace with MC Dropout (accuracy of 87.1%) and the best performing model was flipout
(accuracy of 92.7%). After analyzing the classification report results, Laplace approximation
simply creates a distribution around the weights of an already trained model and, unsurpris-
ingly, closely aligned with the results of those respective models used for the approximation.
Additionally, flipout is the best performing model in terms of MNLL with a value of 0.245.

Bayesian Method Acc MNLL
Deterministic 90.2% N/A
MC Dropout 87.2% 0.433
Flipout 92.7% 0.245
Reparameterization 87.1% 0.561
Laplace Approximation 90.2% 0.324
Laplace with MC Dropout 87.1 % 0.435

Table 1: Bayesian Method Results.

Based on the results of that study and effectiveness of the methods, flipout was the best
representation of Bayesian methods, as it directly samples from the activation weights, and was
the highest performingmodel. The primary benefit to using Bayesian techniques is the inclusion
of uncertainty quantification analysis. In addition to comparing anMNLLmetric as an indicator
of how close a model is to the true underlying data distribution, Bayesian models can also be
compared with respect to the quality of the estimated uncertainty by analyzing an uncertainty
calibration graph. We illustrate uncertainty calibration graphs for some of the evaluated models
in Fig. 1, where we evaluate how the F1 score changes as the most uncertain data is removed
(filtered) from the test dataset in evaluations. On the right of the graph, if all data from the test
set is kept, accuracy is as reported in Table 1. If uncertain test samples are removed such that
all entropy values are below 0.50, performance increases significantly. The change to F1 drops
off rapidly as entropy approaches zero. The ideal case, or the most calibrated uncertainty graph,
would be the curve that hugs the upper right corner; that is data percentage remains high even
as entropy drops, indicating fewer uncertain data samples. Under this selection criteria flipout
is again the best performing method to develop Bayesian models for this application.
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Figure 1: Calibrated Uncertainty

5. CONCLUSION

Assessing the quality of SAS images offers a distinct advantage of identifying the source of
a poor performing classification system. When sensors or systems begin to fail, they may pro-
duce artifacts in images that go unnoticed by the human eye but can be identified by a machine
learning algorithm. With the uniquely developed dataset in this work we introduced this new
machine learning task for SAS and establish feasibility of such an approach and a baseline per-
formance, the results of which are summarized in Table 1. We demonstrated that we can obtain
high quality uncertainty estimates as quantified by the uncertainty calibration graph presented
in Fig. 1.

The findings from this study here have the potential to make a significant impact on the field
of autonomous monitoring of SAS systems in a production setting. By providing an uncertainty
estimate, it becomes possible to have a more granular analysis of the model performance, which
in turn leads to an increase in the interpretability and trustworthiness of the model predictions.
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