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Abstract: Generating synthetic aperture sonar (SAS) images involves delaying and coherently
summing the echoes recorded by the elements of the receiving array over multiple pings onto
the desired rendering points. This requires accurate knowledge of the two-way travel time taken
by the signal to travel from the transmitter to a particular point and the echo to return to each
physical receiving element at each ping within the synthetic aperture. The bathymetry of the
scene has a significant impact on the two-way travel time which cannot be ignored. Inaccura-
cies in the assumed bathymetry, e.g., an incorrect height, lead to errors in the estimated travel
time and cause defocusing of the image. If prior information of the bathymetry is available,
it can be used to improve the estimate of the travel time. Typically it is desired to form the
image on a grid with a regular sample spacing. However, the bathymetric data may not be reg-
ularly sampled. For example, our processing chain generates a pair of sidescan images using
broadside beamforming with vertically separated receiver arrays to estimate the bathymetry
via interferometry. Due to the non-ideal motion of the vehicle, the broadside beams are neither
parallel to each other nor equally spaced. This effect is particularly pronounced when used
with a circular geometry: bathymetric estimates will be dense in the centre of the circle and
sparse near its circumference. There may also be gaps in the estimates due to shadows, area
of low coherence, crabbing etc. Data captured externally (e.g., from an echo sounder, or on a
prior mission) may be in a different coordinate system to the current mission. In this paper, we
compare two methods for resampling the bathymetric measurements to an imaging grid, namely
linear barycentric interpolation and inverse distance weighted (IDW) interpolation.
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1. INTRODUCTION

Reconstructing synthetic aperture sonar (SAS) images requires the coherent combination of
the echoes recorded on different pings, and thus an accurate knowledge of the two-way travel
time of each acoustic pulse. If the bathymetry of the scene is available, it can be used to find the
position of each focus point in the image to aid in calculating the travel time. This bathymetry
could take the form of a digital elevation model (DEM, only the seafloor depths) or digital
surface model (DSM, depths of the seafloor and any proud objects). It could be generated on a
previous mission over the same area, however localising the trajectory of the system on the new
mission within this data to a sufficient accuracy to generate high-quality images is difficult.

Alternatively, a DSM can be generated at an earlier stage of processing. In this paper we
describe a sidescan processing scheme which use interferometry to estimate the bathymetry.
This data is likely to have a lower along-track resolution than the final SAS image and, since it is
measured broadside to the system, will not be sampled on a regular spatial grid due to non-ideal
motion of the system. Areas of low coherence (e.g., shadows) will result in missing data points.
As a result, using these datasets to provide bathymetric information for SAS reconstruction
requires resampling to the desired imaging grid and interpolation to fill in missing areas.

In this paper, we compare two methods for resampling bathymetric data: linear barycentric
interpolation and inverse distance weighted (IDW) interpolation. Section 2 describes the sides-
can interferometry process which generates the real input data and a method for generating test
data with ground truth. The interpolation methods are then presented in Section 3. They are
compared in terms of interpolation accuracy and computation time in Sections 4 and 5, respec-
tively. We conclude with a discussion in Section 6.

2. SIDESCAN INTERFEROMETRY

Our processing toolchain includes an interferometric sidescan step to estimate the bathymetry
of the imaged scene. An initial ground plane is provided by the operator and a simple delay-
and-sum beamformer is used to focus the energy onto this plane at points intersecting a beam
projected broadside from the vehicle. This results in a stripmap-style sidescan image indexed by
ping number and slant range. The complex coherence between the images from both arrays of an
interferometric pair (generated using the same focal points) is calculated within 1D windows in
slant range over a number of pixel shifts. The fractional shifts leading to the highest coherence
magnitude at each point are estimated using peak fitting and form an interferogram giving the
phase shift observed between the two arrays. This can then be unwrapped and the depth and
across-track position of each original point subsequently updated to give a bathymetric dataset
of (x,y, z) positions indexed by ping number and slant range [1].

Evaluating the performance of the remapping requires ground truth of the scene. As this
is not available for real data, a synthetically generated bathymetric dataset is used. First, the
stochastic subdivision (‘diamond-square’) algorithm introduced by Fournier et al. [2] is used to
create a DSM. A two-dimensional array of depths is iteratively subdivided; after L iterations, a
side containing M initial points is increased to 2X(M — 1) + 1 points. The depths of the new
points at each iteration are taken from a normal distribution N '(p, c™'*) where 1 is the mean
of the surrounding points, [ is the iteration number, H is a self-similarity parameter and c is a
constant. Each iteration adds features of increasingly higher spatial frequency with a decreasing
magnitude, retaining the general shape set by the earlier iterations. This is impractical for large L
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Figure 1: Bathymetric dataset generated using L = 8, ¢ = 2.5, H = 0.87, a baseline of 0.2 m,
a wavelength of I cm, a SNR decreasing from 40dB to 10 dB with range, a minimum
grazing angle of 5°, a window size of 51 points and a coherence threshold of 2/3.

due to the large number of new points. However, the generating distribution approaches N (u, 0)
as [ increases, meaning that later iterations are effectively equivalent to bilinear interpolation.
A bathymetric dataset can then be generated from the DSM. First, a 1D slice is obtained by
interpolating along a line from the horizontal position of the system. A second interpolation then
yields the z, y and z values as a function of slant range from the system. The differential phase
between the receivers can be calculated for a given interferometric baseline and wavelength [3].
Phase noise based on the expected SNR is added, and ranges corresponding to shadowed areas
or areas of low grazing angle have their phase set to a random value between 7. The local
variance of this noisy interferogram is calculated with a sliding window in slant range. A lookup
table is then used to generate a coherence map from the phase variance. Applying a threshold
to this allows areas of the bathymetry where no valid data would be found by the sidescan
processing to be masked out. Fig. 1 shows an example of a generated bathymetric dataset.

3. INTERPOLATION METHODS

As the measured bathymetry will not be sampled on a regular grid, simple methods such
as bilinear interpolation cannot be used. Two methods are compared here: linear barycentric
interpolation and inverse distance weighted (IDW) interpolation. Initially, a radial basis func-
tion (RBF) interpolator was also tested. Similar to the IDW method, this used a weighted sum
of RBFs from the surrounding points to calculate the output depth. However, this was signif-
icantly more computationally expensive while not improving the accuracy of the interpolated
bathymetry, and so is not included in this comparison.

The linear barycentric interpolator first computes the Delaunay triangulation of the input
points. The barycentric coordinates of a target point in the triangle containing it are used to
generate weights from each corner of the triangle. These are used in a weighted sum of the
measured depths at the corners to calculate the interpolated depth. The SciPy library [4] contains
an implementation of this method which was used for this comparison.

Introduced by Shepard [5] for the interpolation of spatial data, the IDW method computes
the output as the weighted sum of the inputs. The basic weighting function given by Shepard is

1

w;(x) = XX (D
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where the subscript i indexes the input data samples, X is the output coordinate, x; is the i input
coordinate, d is a distance metric between two coordinates and p is the weighting exponent. The
Euclidean distance and p = 2 are used throughout this paper. For computational efficiency, our
implementation uses SciPy’s k-d tree to select the NV closest points instead of weighting all
points.

4. INTERPOLATION ACCURACY

To test the accuracy of the presented interpolation methods, three scenarios were modelled: a
linear trajectory past an empty seafloor with a low height variation causing no shadows, a linear
trajectory past proud objects casting shadows, and a circular trajectory around a scene with a
proud object. A sonar with a vertical interferometric baseline of 0.2 m, an operating frequency
of 150 kHz and a ping-to-ping spacing of 30 cm was simulated. The sound speed was 1500 m/s,
and the coherence was calculated over bins of 51 samples in length with a magnitude threshold
of 2/3. All bathymetric datasets included a beam broadside to the vehicle and beams 5° either
side of this. There were no depth errors added to the generated bathymetry; in a real-world case,
the interferometry would not be perfectly accurate, but for this study we are only interested in
the performance of the interpolators. The IDW interpolations use the 24 nearest neighbours up
to a maximum Euclidean distance of 2 m from the target point.

For the first test, a 50m x 80 m DSM was generated along with a 40 m linear trajectory
heading north along the western edge of the DSM. Sway was included in this trajectory by using
arandom walk for the system heading with a ping-to-ping heading variance of 0.05°. The DSM
has depths ranging from 5.86 m to 6.49 m with shallow slopes so that there are no missing areas
from shadowing. The sample density of the resulting bathymetric dataset is shown in Fig. 2(a)
for both the broadside beam only and for all three beams. The depth errors after remapping
both cases to the original DSM coordinates with the linear barycentric and IDW interpolators
are shown in Figs. 2(b) and 2(c), respectively. Note that the IDW method extrapolates up to the
maximum distance allowed for input points.

In all four cases, the errors in the regions fully covered by the beams broadly follow a neg-
ative exponential distribution with the parameter A = In2/median(e). The error from both
interpolators is unsurprisingly correlated with the density of the input samples: areas where
there are more points lead to lower errors. The median errors back this up: using three beams
for bathymetry results in a lower error than a single beam due to the increased sample density.
The linear barycentric interpolator has lower errors in general than the IDW interpolator.

Another DSM was then created with two proud objects added: a 1 m radius cylinder and
a 1 m x 2m rectangular pyramid, both reaching 1 m above the seafloor (Fig. 3(a)). Again, a
swaying trajectory with a ping-to-ping heading variance of 0.05° was used in generating the
bathymetry. This was then remapped to the original DSM coordinates using both linear barycen-
tric and IDW interpolators with the resulting errors shown in Figs. 3(b) and 3(c), respectively.

As in the previous example, using three beams results in lower errors than a single beam.
The linear barycentric interpolator again has a better performance than the IDW interpolator.
As well as the surrounding seafloor, this is especially noticeable on the faces of the pyramid
(apart from the occluded eastern face). The vertical sides of the cylinder cause problems for
both interpolators. In a real-world scenario, layover around the vertical faces would cause errors
in the bathymetry in these locations anyway.

The shadow behind the cylinder leads to a rectangular patch of high error with the linear
barycentric interpolator, while the IDW interpolator has a more expected cone shape. This can
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Figure 2: Resampling a plain seafloor with a broadside beam (top row) and three beams (bot-
tom row). (a) Density of input bathymetric samples measured over 0.5m % 0.5m
cells. (b) and (c) Error between interpolated outputs and the original DSM. The
annotated medians are calculated over the fully covered regions.
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Figure 3: Resampling a scene with a 1 m radius cylinder and a 1 m x 2 m pyramid, both 1 m tall.
(a) The original DSM and a simplified triangulation of the three beam bathymetry.
(b) and (c) The difference between the original DSM and the linear barycentric and
IDW interpolators, respectively (top. broadside only, bottom: three beams).
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Figure 4: Resampling using a linear barycentric interpolator on bathymetry collected on a 40 m
radius circular trajectory. A 1 m x 2m pyramid is at the circle centre (bottom), 15 m
north of the centre (middle) and 35 m north of the centre (top). The left two columns
show the number of input points in 5 cm % 5 cm blocks and the error from the original
DSM for a single beam. The right two columns repeat this for three beams.

be explained by the triangulation of the bathymetric data presented in Fig. 3(a) (for display
purposes the bathymetry has been downsampled by a factor of 20 in slant range — the full tri-
angulation exhibits the same patterns). The triangles joining the samples from the first beams
passing the cylinder have a vertex on the edge of the cylinder, biasing the interpolation.

Finally, a circular trajectory with a 40 m radius was created. Similarly to the previous ex-
amples, the ping-to-ping heading change had an error with variance 0.05° added to the change
required to follow the circle. A 1 m x 2 m rectangular pyramid standing proud of the seafloor
by 1 m was placed at various distances from the centre of the trajectory. Fig. 4 shows the input
sample density and the error between the linear barycentric interpolated output and the original
DSM around the pyramid for three positions, comparing the single- and three-beam cases. Al-
though not presented in the figure, the IDW method was tested with this dataset. As seen in the
linear case, it was not able to accurately output the sloped faces of the pyramid.

Again, the accuracy of the interpolation is dependent on the density of the input points. Note
that with a 10° beamwidth and a 40 m radius trajectory, the full-view area of the reconstructed
images would be a circle with a radius of 3.5 m. The interpolation is accurate within areas out-
side this full-view area as it does not rely on forming a synthetic aperture from all angles, but
rather just needs a few beams to cross the area of interest. In many situations, a single bathy-
metric beam crossing the full-view area is likely to be sufficiently accurate. Taking into account
the vertical opening angle may limit the minimum and maximum ranges the bathymetry can be
calculated for with a real system, and thus reduce the area that can be accurately interpolated.
It is anticipated that most systems will have an opening angle larger than that required to cover
the full-view area, allowing the interpolation to be performed outside the full-view area.
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Figure 5: Violin plots of the total interpolation time and the setup (triangulation or k-d tree
creation) component for different interpolators when upsampling the input data by a
factor of 12 in the along-track direction.

5. INTERPOLATION TIME

To compare the time required to interpolate the bathymetric data with the two methods, a
number of timing trials was performed. For each trial, a unique DSM was created and an ideal
linear trajectory with a ping-to-ping spacing of 30 cm was used to generate bathymetric data
over a slant range of 7m to 70 m with a range resolution of 2.5cm. A subset of the first P
pings was taken and interpolated onto a regularly spaced grid of the same along-track length as
the input subset and from O m to 70 m across-track at a resolution of 2.5cm x 2.5cm, i.e., an
along-track upsampling by a factor of 12. It is expected that most real-world systems would
have a similar upsampling factor. This was performed for 15 different values of P ranging from
100 to 1667 pings (corresponding to trajectory lengths of 30 m to 500 m) for 400 trials.

Violin plots of the time taken for interpolation is shown in Fig. 5. For the barycentric inter-
polation, the time taken to triangulate the input takes the majority of the total time. By contrast,
for the IDW interpolator the k-d tree construction time is minimal and the bulk of the time is
taken by selecting and summing the neighbours. The linear barycentric method is approximately
equal to the IDW method with N =24; IDW with N =8 is about 40 % faster.

There are some outliers for the three-beam barycentric interpolator where the total time is
significantly larger than average. Investigation of these cases showed that these were a result of
trying to interpolate points close to but outside the convex hull of the input dataset. In this case,
the interpolator was slow when searching for a triangle to interpolate on. Points further away
from the convex hull did not exhibit this slowdown. It is uncertain whether this is a general
problem with the method or with the implementation used here, but the latter is suspected.

6. DISCUSSION AND CONCLUSION

For the IDW method, the number of input points /N is an important parameter. The ping-to-
ping spacing of the modelled system was twelve times greater than the range resolution, a factor
that we consider realistic for a typical SAS. As a result, the twelve bathymetric measurements
nearest to a target point are likely to be from the same beam, and so for /N < 12 the interpolation
would tend to be one-dimensional along the nearest beam. Our choice of N = 24 for most of
the testing ensures that multiple beams are used. A lower value of /N may reduce the amount
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of smoothing and better capture local depth variations. The value of N should be tuned for the
collection geometry of a given system, especially if multiple beams are used.

The linear barycentric method gave a more accurate interpolation in all scenarios. For simple
scenes, the errors from the IDW method are likely to be negligible compared to errors in the
bathymetry estimates which are not modelled in the test datasets. The linear barycentric method
was clearly superior when objects were included in the scene, which is not surprising as the
triangulation is able to capture the geometry of the objects better than the weighted average
that 1s used for the IDW method. Shepard [5] gives an alternative weighting function taking the
slope into account which could help at the cost of increased computation time. Although neither
method could interpolate the shadowed areas behind proud objects, this is of no concern as there
will be no valid data to reconstruct an image in these areas. For N = 24 the two methods are
essential equivalent in terms of computation time, while the IDW method is faster for lower
N, although likely by not enough (especially when compared to the total time taken by the full
SAS processing chain) to offset the reduced accuracy.

IDW interpolation will have a higher memory usage than linear barycentric. The latter must
store the vertex indices of each triangle, and during interpolation calculate three barycentric
coordinates and the corresponding weights for each point. The IDW interpolator must find N
points and their distances from the target point, and then calculate the weights. As typically
N > 3, this leads to a higher memory usage. In practice, the memory requirements may require
the interpolation to be performed in separate chunks, especially for long missions.

Parallelisation could reduce the time required to perform the interpolation. For the linear
barycentric method, the triangulation of the input dataset is the bottleneck. Some methods have
been published to allow this triangulation to be performed in parallel blocks while maintaining
the consistency of the triangulation across the boundaries of the blocks [6]. The interpolation
step could also be performed in parallel after the triangulation is complete. By contrast, the
construction of the k-d tree is significantly faster than the subsequent IDW weighted sum. The
SciPy implementation used here allows multi-threaded selection of points from the tree which
speeds up the timing tests by ~ 400 % when using 8 threads. The construction of the k-d tree
could also be parallelised by assigning each branch to a different thread after splitting.
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