
Time and Cost gains enabled by Machine Learning for
Environmental Impact Assessments

Mariana Semião1, Bénédicte Hoofd2, Erica Cruz2, Diana Almeida2, Susana
Vieira1, and Guilherme Vaz2

1Instituto Superior Técnico, Lisbon, Portugal
2blueOASIS, Ericeira, Portugal

Abstract: An Environmental Impact Assessment (EIA) is a process aiming to assess a priori the
impact that a large scale project would have on an ecosystem, to propose mitigation measures
to minimise potential impact, and also to monitor the effectiveness of the measures during the
execution of the project. The process often lasts up to 4 years. It is a mandatory step for the
deployment of any new projects at sea such as the construction of a harbor terminal, the instal-
lation of an offshore wind farm or an aquaculture cage. One common threat that such projects
pose is an increase of underwater noise. This topic is particularly important when assessing the
impact on marine mammals and fish because they use underwater sound to interact for feeding,
mating, or socializing. One of the methods to assess the impact of underwater noise on marine
mammals is to estimate the presence/absence of animals in the specific region of the project
using passive acoustic monitoring. This process is usually expensive: it requires the expensive
installation of hydrophones, the manual recovery of the recorded data and the equipment with
divers and ships, and finally the long manual analysis conducted by an expert to distinguish the
different types of dolphins’ vocalizations. This paper evaluates the time and cost gains that a
Machine Learning algorithm can bring for the detection of acoustic sources of a specific site.
A Deep Learning ensemble model is trained to detect dolphins in a coastal environment in Por-
tugal, using a manually labelled dataset. The paper establishes the minimum requirements in
terms of training dataset to allow for an automated, accurate, and fast analysis of the dolphins’
behavior in the area. The requirements consider the size of the dataset, but also the class bal-
ance and data processing required for the analysis. It was found that for the analysis of the
used dataset, the labelling efforts can be reduced by a factor of 15.
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1. INTRODUCTION

Underwater soundscapes result from a combination of anthropogenic and natural sources [1].
The contribution of each source will depend on the characteristics of both the sound and the en-
vironment that affect sound propagation [2]. Several marine species use sound as their main
sense for relevant activities such as feeding, communication and breeding [3]. Due to the in-
creasing of anthropogenic offshore activities, marine life is considerably impacted and this topic
has been gaining attention from several stakeholders. Guidelines for underwater noise reduc-
tion from shipping, issued by International Maritime Organization [4], or the Marine Strategy
Framework Directive, in Europe [5], reflect the need tomanage underwater noise pollution. Ad-
ditionally, Environmental Impact Assessment (EIA) studies, for new offshore projects, such as
offshore renewables, oil&gas, and aquaculture, usually require promoters to assess the impact
of underwater noise resulting from the project. These noise sources and their impact on marine
environment can bemonitored using passive acousticmonitoring systems, such as hydrophones.
This is a long and costly task that can often impact their business model and cause delay in the
projects’ deployment, as an example, a three years cetacean monitoring can cost 370,000€. The
regulations and recommendations force therefore the users to find new approaches to monitor
their activity underwater.
Deep Learning (DL) applied to the field of underwater acoustics is a promising approach that can
significantly decrease the time of the analysis and decrease its costs. For example, [6] and [7]
proposed complex DL algorithms to analyse the spectogram of the sound data and they showed
that Convolutional Neural Networks (CNN) are in fact a powerful way to conduct in depth anal-
ysis of recordings for the detection of specific sounds, like dolphin calls. Simpler models can
however be used, such as the one presented by the authors in [8]. This work proposed to train
a simple 3-layer CNN model using the spectogram of underwater recordings, in order to auto-
mate the identification of dolphins and ships. The model was trained and validated using two
open source datasets: ShipsEar ([9]), with several types of vessels and background environment
noise and DOSITS ([10]), with clean vocalization of dolphins recordings. The model showed
very good results on the validation set based on those two datasets, but the model performed
significantly worse when using a different dataset that was collected during the Robotic Exper-
imentation and Prototyping using Maritime Uncrewed Systems (REPMUS), [11]. The authors
showed that one critical factor in the training was the quality of the dataset and its relevance
to a ”real life” application. In this paper, the model architecture remained similar, but it the
performance was improved by using REPMUS data as a training set.
In addition, in [8] only the Mel spectrogram and pseudo-derivatives are used as features to iden-
tify dolphins. However, as presented in [12] using different features such as the Mel-frequency
cepstral coefficients (MFCC), the Log-Mel (LM) and the Zero-crossing rate (ZCR), the results
can be severely improved. Additionally, the enhancement of the Mel spectogram as proposed
in [13] can also provide informative features that will be tested in the current work. Finally,
model ensembling techniques, such as stacked generalization, can take advantage of the best
qualities from multiple models to improve the global performance. Those different techniques
were also tested here and their evaluation to the problem at hand is also presented.
The performance of a DL algorithm is not only related to its structure but also to the adequate
selection of the hyperparameters. In [8], the dropout, learning rate and kernel regularizer were
tuned, using Bayesian optimisation. However, a Hyperband Tuner can lead to better results and
in a shorter time [14]. In fact, it runs random configurations for a fewer number of iterations
per configuration, then, using previous results it selects candidates for longer runs, increasing
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the number of iterations as it decreases the number of best configurations. In the current work,
Hyperband optimisation was used as well, in order to optimise 6 hyperparameters.
In this paper, Sections 2 and 3 introduce the dataset used and how it is processed. In Section
4, the ensemble model is explained, presenting results and comparing the features extracted. In
Section 5, the automated method is compared with manual labelling in terms of time gains. The
papers then concludes with a proposition of future work to further increase the performance of
the model and increase the gains.

2. DATASETS AND MANUAL LABELLING

The dataset used in this work corresponds to 35 .wav files of 10 minutes recorded during the
REPMUS 2021 exercise. For each file, manual labelling was conducted by a marine biologist
expert. The spectrogram of the file was visualised and listened to using the software Audacity.
By going through each second of the recording, the biologist would clearly identify various
dolphins sounds such as burst pulse sounds (BPS), gulps (GP), grunts (GR), whistles (WH) and
squeaks (SQ), according to [15]. In all files used for the analysis, a distant vessel (VL) was
always present. Any other identified sound that could not be classified was grouped into one
label: unknown events (UV). A labeling .txt file was created for each recording. It contained
the start time, end time and classification of each identified sound. An example of a typical 10
min spectrogram, a WH instance and SQ instance are presented in Figure 1.
After analysing the labels, it appeared that the dataset was highly imbalanced, with 97.21%
more vessel instances than dolphin instances. To reduce the dataset imbalance, which often
leads to a decrease of performance when used for DL applications, the classesWH and SQwere
considered to be on dolphin class (DN) as they represent similar frequency noises, the classes
BPS, GP and GR, which represented only 0.17% of the total instances where grouped with
the VL class in the class background noise (BK). This class was then randomly undersampled
to match the size of the class DN, leaving the classification as a binary dataset with only two
classes: dolphin (DN) and background noise (BK).

Figure 1: Left: typical spectrogram with a distant ship. Middle - example of whistle. Right -
example of a squeak.

3. AUTOMATED PRE-PROCESSING FOR DEEP LEARNING APPLICATION

The same pre-processing as in [8] and [16] is used to prepare the recording for its analysis
with the CNN using the python library librosa. Using a sample rate of 52734, a HannWindow
with hop of 1024 and length of 2048, each recording was transformed into a spectogram using
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a Short-time Fourier Tansform (STFT). The values of the matrix were then squared to obtain
the power spectral density. Next, the spectogram was converted into a Mel scale spectogram
with 60 bands, and then split into windows corresponding to one second of the recording.
As presented in Section 1, different features were extracted after this step to test their effective-
ness in improving the dolphin detection: the first and second pseudo-derivatives (Dev1, Dev2)
followed by a scaling process were calculated as in [8] and [16]; the Log-Mel, which is the
logarithm of the Mel scale spectogram (MS); the MFCC, which is the linear cosine transform
of the Log-Mel spectrum; and finally the ZCR, that is defined in [12] as ”the number of zero
crossings in the time domain within one second”. Given the shape of the output matrix from
each of those pre-processing methods, the various features were stacked differently. The final
matrix shape for each 1-second recording and each stacking process can be found in Table 1.

Features Model input shape MCC F1 Macro F1 Weighted
MS+Dev1+Dev2 (60, 50, 3) 0.44932 0.41669 0.59995
MS+MFCC+LM (60, 50, 3) 0.29986 0.37493 0.49379
MS+LM+BW (60, 50, 3) 0.35341 0.40915 0.50364
MS+LM+MFCC (180, 50) 0.41209 0.41272 0.56950
MS+LM+MFCC+ZCR (181, 50) 0.35178 0.37091 0.53518
MS+LM+ZCR (121, 50) 0.32748 0.36613 0.52168
BW (40,50) 0.20127 0.59971 0.61755

Table 1: F1-score and MCC for models with different features.

One of the challenges rising from the use of ”real life” data like REPMUS is that the spec-
togram obtained from the previous pre-processing is not as clear as the ones from datasets such
as DOSITS, which makes the identification significantly more difficult. To overcome this is-
sue, traditional computer vision techniques were used to enhance the spectogram image. As
in [13], a contrast stretch is applied to the STFT spectogram to increase its dynamic grayscale
range. This was done by subtracting 20 to where the value of the spectrogramwas in the interval
[20, 70] or adding 80 when the value was in [80, 120]. This is followed by the binarization of the
image, i.e. the transformation of a grayscale image into a black and white (BW) image, using
a threshold of 100. This means that the grayscale values above or below 100 will be white or
black, respectively. Different mathematical morphology techniques were tested as a final step
of enhancement. Dilation and erosion consist in, respectively, expanding or shrinking white
areas on the binary image (i.e. pixels with value of 1). Opening and closing result from the
application of the previous two operators in a specific order: This modifies the image by elim-
inating noise in black or white, while maintaining the main information in the image. For the
dataset in question, closing resulted in the more clear images. This method consists in simply
dilating and then eroding, removing dark dots. These steps are presented in Figure 2. Because
the dolphin whistle and squeaks correspond to high frequencies, and because the bottom of the
binarized image is always just a white section, as shown in the most right image in Figure 2,
the lower part of the binarized spectrogram was cut from the analysis.
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Figure 2: Left - original spectogram. Middle left - equalized histogram. Middle right - with
stretched contrast. Right - binarized and closed.

4. MODEL ARCHITECTURE AND FEATURE EVALUATION

One main architecture, based on the work in [8] is used. It consists of a first convolutional
layer with 24 neurons, followed by two convolutional layers with 48 neurons each. All three
layers have kernel sizes of (5,5), strides of (1,1) and MaxPooling in between them. The first
two layers also have padding. Following the convolutional layers, the output is flattened, and
then followed by two dense layers with dropout. The final dense layer has 2 neurons, due to the
2 classes. The activation functions are ReLU (Rectified Linear Unit) on all layers except the
final output layer which has an activation function of Softmax.
Each feature, as described in Section 3 is tested with that architecture. To do so, the processed
data is split into 3 sets for training (70%), validation (15%), and testing (15%). Each set was then
divided in two, to keep ”unseen data” to train the meta-learner, as later explained in this section.
The model architecture is adapted to the shape of the input matrix as presented in Table 1. Each
model is then trained for 50 epochs or stopped earlier if over-fitting is observed. Three metrics
of comparison are used: - theMatthew’s Correlation Coefficient (MCC), which is used to assess
the quality of a problem with imbalanced data; - the F1-score (macro), which corresponds to
the arithmetic average of every classes’ F1-score; - the F1-score (weighted), which, similarly,
corresponds to the weighted average of every classes’ F1-score. F1-score Weighted is more
relevant for imbalance data than Macro F1-score. It is important to note that the MCC varies
between -1 and 1, consequently, an MCC of 0 corresponds to random predictions, meaning
positive and negative MCC correspond to good and bad model performance, respectively. The
comparison of all features through this metrics can be found in Table 1.

The best performing models are MS+Dev1+Dev2, hereafter referred to asModel 1, and BW
model, referred asModel 2. To increase their performance, bothmodels were optimized in terms
of dropout and ADAMoptimizer parameters (learning rate, β1 and β2, i.e. the exponential decay
rate for the momentum and velocity term, respectively, and ϵ) using the Hyperband method.
After optimization, Model 1 achieved the following results: 0.71 and 0.74 F1-score for DN
and BK, respectively; 0.72 Global Weighted F1-score and 0.4453 MCC. This represents a great
improvement comparing to the validation on REPMUS done in [8], where dolphins were often
wrongly detected and with low certainty. Model 2 was tested after optimization, resulting in:
0.52 and 0.68 F1-score for DN and BK, respectively; 0.62 GlobalWeighted F1-score and 0.2020
MCC, as presented in Table 2.

As the previous two models work with different features from the same data, they can be
stacked using a meta-learner, i.e., used simultaneously to predict more accurately the presence
of dolphins, as presented in Figure 3. Stacked generalization (i.e. the ensemble technique used)
uses a meta-learning algorithm that learns to aggregate the predictions of several other machine
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learning models; it takes advantage of the best capabilities of each of these models, in order
to outperform the ensembled models. Using data that was not used to train Model 1 and 2,
the meta-learner was trained using the predictions ofModel 1 and 2 as inputs and the expected
outputs. The model hyperparameters were optimized using Hyperband, in the same way as
Model 1 and 2. After this optimization, the Ensemble Model yielded the following results: 0.70
and 0.81 F1-score for DN and BK, respectively; 0.76 Global Weighted F1-score and 0.5394
MCC, as presented in Table 2.

Figure 3: Ensemble model structure.

Model Input Shape MCC F1 Macro F1 Weighted
Model 1 (MS+Dev1+Dev2) (60, 50, 3) 0.44531 0.72266 0.72325
Model 2 (BW) (40,50) 0.20200 0.60088 0.61733
Ensemble Model [(60, 50, 3),(40,50)] 0.53940 0.75480 0.75947

Table 2: F1-score and MCC for optimized final models.

5. COMPARISON BETWEEN THE MANUAL AND AUTOMATED DETECTION

A sensitivity analysis was conducted to assess the dataset requirements to reach the perfor-
mance achieved in Section 4. The influence of the amount of labelled data for a balanced dataset
and the influence of the percentage of imbalance on theMCC and F1-score are presented in Fig-
ure 4. It can be seen that, with the current ensemble model, only 60 min of labelled recordings
are necessary to reach an F1-score of 0.70 on DN class. This corresponds to 28 min of dolphin
recordings and 32 min of background recordings. Considering 15 min of labor for the labelling
of a 10 min recording, this corresponds to a labelling effort of only 90 min. However, more
work is actually needed because dolphins sounds are relatively rare, so files with multiple dol-
phin noises are selected thanks to a quick screening of all the recordings before the start of the
extensive and time consuming labelling process. This is particularly important given the high
importance of having a balanced dataset, as shown in Figure 4 (right). Screening the recording
is a rapid process: only half of the files are looked at, and the expert spends on average 1.5 min
to screen a file of 10 min. Considering the current dataset with 560 files of 10 min, the screening
process lasts 7h. After this initial screening, the expert must fully label 60 min of recordings.
For recordings with many different sounds, an expert would take 20 min to label a 10 min file.
This leads to a labelling time of 2 hours. Therefore, in total, the screening and the labelling
effort are only 9h. After training the algorithm with those labeled files, all other files can then
be automatically analysed in no-time instead of spending 140h to manually detect the dolphins.
To use the same technique on another site, it is expected that a step of transfer learning will be
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necessary, which means that the time for screening and manual label of a limited amount of
files will still be required. This is nonetheless a significant improvement compared to a fully
manual analysis.

Figure 4: Sensitivity analysis: Left - dataset size, Right - dataset balance.

6. CONCLUSIONS

In this paper, a stacked ensemble model of two simple CNN was built, tested and optimised
to detect dolphins from real life hydrophone recordings, reaching aWeighted F1-score of 0.7595
which corresponds to a significant improvement compared to the previous work using the same
simple CNN. In addition, a sensitivity analysis was conducted to assess how much manual
labelling is required to have enough data to accurately train the model. It was shown that a
balanced dataset containing 30 min of recording for each class is enough to reach a Weighted
F1-score of 0.76. The algorithm can then be used to automatically label with the same accuracy
any recordings in the same environment. This represents a significant gain in time and costs for
tasks such as EIA: just for the REPMUS exercice, the labelling time was divided by 15. The
sensitivity analysis should however be continuedwithmore data to find the optimal compromise
between accuracy and effort in manual labelling. In addition, the technique of transfer learning
should also be analysed to further decrease the dataset requirement to re-train the algorithm for
the automatic detection of the same classes or different classes in a new site.
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