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Abstract: The wide range of environmental fluctuations present in underwater acoustic propa-
gation affects sonar performance. In particular, internal waves can cause sonar arrays to lose
signal coherence, reducing their gain. One of the most direct ways to mitigate this effect is to
use sub-array processing. By taking the coherence radius (the average distance at which the
signal received by two sensors can be assumed to be coherent) as the parameter determining
the length of a typical sub-array, this method allows for more conventional processing methods
to be used while assuming a coherent field on each sub-array. In this work, we use the Canoni-
cal Correlation Analysis (CCA) method to learn a model between acoustic and oceanographic
variables, that is used to infer the coherence of the signal from environmental measurements at a
latter time. To compensate for the loss of angular resolution, we introduce the use of a bayesian
algorithm on the sub-arrays. We show on experimental data from the ALMA 2017 campaign
that sub-array processing with a bayesian algorithm can improve detection performances when
the coherence of the signal is degraded.
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1. INTRODUCTION

Environmental fluctuations in underwater acoustics can be detrimental to sonar array per-
formance. Ocean fluctuations, such as internal waves, will cause local variations of the sound
celerity. This leads to a decrease in the spatial coherence of the acoustic wavefronts. Coher-
ence of the acoustic pressure on the array is directly related to the array gain [Carey, 1998,
Real et al., 2015], and sonar detection performance will be related to the ability to predict the
acoustic coherence on the array. Several methods have been proposed to mitigate the effect of
coherence loss on an array [Beaumont et al., 2018, Morgan and Smith, 1990, Lefort et al., 2017],
but they rely on a previous knowledge or estimation of the coherence.

Oceanic fluctuations are very complex to describe. Therefore we will rely on statistical
models to describe to infer acoustic fluctuations from some oceanographic measurements. In
[L’Her et al., 2022], we showed that Canonical Correlation Analysis (CCA) can be used to find
physical relationships between oceanographic and acoustic measurements, this motivates the
use of CCA for the extraction of relationships to inform processing algorithms. The chosen
algorithm is a sub-array processing scheme from the literature ([Cox, 1973, Lefort et al., 2017]),
based on defining sub-arrays from the coherence length, ie. the mean length at which two
sensors from the array remain correlated.

We will first present the ALMA 2017 campaign and the in-situ data. We will then present
the sub-array method, and we will introduce the use of a Bayesian model from the literature to
perform DOA estimation on the sub-arrays. We then explain the theory of CCA and introduce
a generative version of the model. The generative model will be used, after prior training,
to infer the acoustic coherence length from oceanographic variables only. Finally we present
preliminary results of detection performance calculations of four studied DOA algorithms.

2. THE ALMA 2017 CAMPAIGN

ALMA (Acoustic Laboratory for Marine Applications) is a series of oceano-acoustic at-sea
campaigns designed and operated by DGA Naval Systems [Real and Fattaccioli, 2018]. The
2017 campaign took place in the Western part of the Corsica Cape, in the Gulf of Saint Florent
(Fig. 1 (left) ). It included simultaneous oceanographic and acoustic measurements, with the
goal of studying the effect of ocean fluctuations induced by internal waves on acoustic propa-
gation.

The acoustic setup consists of two omnidirectional sources, and 4 32-element vertical linear
arrays (VLA) 16.5 km away from the source. The array is spatially sampled at 5 kHz, which
means that the hydrophones are separated by 15 cm. The deepest hydrophone of the array is at
110 m depth, where the total water depth is 140 m. The recordings are sampled at 48 kHz. In this
work, we will use emissions from one source only, placed at 170m depth, and the measurements
from one VLA of 32 elements. Figure 1 (right) shows a ray trace for the source at 170m depth
in a range-independent celerity field constructed from an ARGO float profile taken at the date
of the campaign. It shows the complexity of the acoustic field across the double canyon, with
reflected and refracted rays.

The oceanographic setup consisted of a 150 m length, 24 elements thermistor chain. It sam-
pled the temperature every 3 seconds, and was placed approximately 2 km away from the array.
In Fig. 2 (left) we show the temperature measured by the thermistor chain during the campaign.
We see many scales of fluctuations induced by internal waves : there are small oscillations on
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Figure 1: (left) ALMA 2017 location with its bathymetry and the positions of the source, ther-
mistor chain and array. (right) Ray trace for the source at 170m depth in a range-
independent case.
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Figure 2: (left) Temperature measurements as a function of depth and time. (right) Impulse
response of the 170m deep source, during a 15 h measurement phase.

the timescales of hours that will primarily interest us, and larger oscillations on scales of days
that will not be studied in this work.

The acoustic emission sequences are notably composed of a linear frequency modulation
(LFM) from 1 to 13 kHz during 10 s and 2 s long continuous waves (CW) at different frequencies
(2,5,7,9,13) kHz. Each emission sequence duration is 1 min 30, alternating the source, ie. each
source emits a sequence every 3 min. In Fig. 2 (right), we show the impulse response of
the source at 170m depth during the longest acquisition phase, calculated using the LFM. There
appear to be important smooth variations in the arrival-time of the last energetic arrival (between
0.15s and 0.2s), that seem to follow the fluctuations of the second strong arrival group (at around
0.02 s). We can also see smaller scale fluctuations with rays appearing or disappearing, or
showing important amplitude variations from one ping to the next.

Overall, this shows the complexity of the time evolution of both the environment and acous-
tic propagation. The environmental fluctuations, on top of the complex acoustic propagation
and a sparse knowledge of the environment makes it a very interesting campaign to study the
relationships between environment knowledge and acoustic propagation.
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3. SUB-ARRAY PROCESSING

To compensate for the loss of coherence, we consider the sub-array processing method pub-
lished in [Lefort et al., 2017]. This method treats the beamforming problem as a convolution
between the signal on the array and a window of the size of the coherence length. As a starting
hypothesis, the effect of ocean fluctuations on the acoustic field is assumed to be modeled by
a complex multiplicative noise as discussed in [Dashen et al., 2010, Ch. 8]. The pressure field
received on the VLA of M sensors at time ¢ is written in the frequency domain as :

y: = P.Dx; + ny, (1)

where P, is a diagonal matrix containing the multiplicative noises attached to the M sen-
sors, D is a dictionary of N DOA (i.e. the i-th column of D is d(6;) = [1, e/ Asin®)
eI X (M-DAsin0))T \ith T the transpose operator, A the distance between two consecutive
sensors and A the wavelength of interest), x; contains the contribution of the sources in each
DOA in the dictionary and n; is a complex Gaussian additive noise.

The method is detailed in [Lefort et al., 2017], it consists in extracting K arrays of the same
length as the antenna, and weighting them by a sliding gaussian window. Then, for sub-array £,
the new signal yy, ; is such that the multiplicative complex noise P, can be assumed constant.
We then fall back on a classical generative model in DOA estimation:

Vir = Dy Xpy + Ry, ()

where ]N)m = W;,D, n,;, = Wy n, X = aiX, with o the multiplicative noise, constant
on the k-th sub-array. As in [Lefort et al., 2017], the weights of each sensor can be defined
according to the mutual coherence function (MCF). In [Dashen et al., 1985], a theoretical model
for the MCF is proposed as I';(m) =exp(— %), where m is the distance expressed in number
of sensors between two sensors in the VLA and L. € RT is called the “coherence radius” and
approximates the relative space where two sensors remain correlated. Here sub-index ¢ indicates
that the MCF will vary as a function of time. As a consequence, the weights of the sensors can
be defined by the MCF as wy,(m) = I';(|k — m|). This way, the sub-arrays will consist on
average of coherent sensors, and eq. (2) will be valid. Finally, the outputs from the sub-arrays
are incoherently summed to get the power spectrum at each time ¢ and for each DOA i:

K

5100 = (X lona(@)) ®)

k=1

Considering model (2), the DOA estimation can then be performed by solving an inverse
problem. The most classical and popular method is beamforming, which focuses on the follow-
ing problem : Vi € {1,..., N},

e (0;) = argming o0 Vi — di 1 (0:)T1.4(6:)]15 4

where ||.||2 is the ¢5-norm, &M(Qi) the i-th column in l~)k’t and 7 .(6;) the i-th element in Xy ;.

As the use of sub-arrays reduces the angular resolution of the array, we applied a regular-
isation to the DOA estimation to regain the lost resolution. To solve such problems, methods
exploiting a sparse model have recently come to the fore. These methods consider the regu-
larised optimisation problem:

X = argming, [[Yi: — Dy Xp 15 + 11l|Xz]los Q)
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where ||.||o denotes the ¢y pseudo-norm, counting the number of non-zero coefficients and p
is a Lagrangian multiplier. Problem 5 is NP-hard. Many sub-optimal algorithms have been
proposed in the literature to solve it. Here, we propose to resort to the Bayesian algorithm
SoBaP proposed in [Drémeau et al., 2012] and already considered in underwater acoustics in
[Drémeau et al., 2017]. Note that both problems 4 and 5 rely on different assumptions on Xy, ;
: Eq. 4 expresses a maximum likelihood estimation, while Eq. 5 considers a sparse model, by
means of a Bernoulli-Gaussian model.

4. CANONICAL CORRELATION ANALYSIS

To define the length of the sub-arrays, it would be best to have a previous knowledge of the
coherence length. Considering the influence of the medium on acoustic coherence, we aim to
find relationships between acoustic variables and ocean measurements. As it can be complex
to relate acoustic and oceanographic measurements, in particular when the knowledge of the
environment is very limited, statistical methods are well suited to do it. Here we show the use
of CCA. It is a method first published in [Hotelling, 1936], to relate two groups of variables.
In a nutshell, it finds linear combinations of each group of variables, such that their correlation
is maximum. In our case, those groups are composed of acoustic variables on one side and
oceanographic variables on the other.

In [L’Her et al., 2022], we explicit the CCA model and show how this method can find
physically-meaningful relationships between acoustic and oceanographic variables from in-situ
data, in a shallow water range-independent context. We refer the reader to this article for the-
oretical development. CCA can also be reframed in the form of a generative predictor model.
Let A be the matrix of the acoustic variables, and B the matrix containing the environmental
variables. We then propose a two-step procedure : i) a training phase where S and g, the
canonical coefficient matrices, are estimated by the CCA method on the basis of both measure-
ments training datasets Ay,.q;, and By,.q;,,. ii) The inference of Atest from the canonical coeficient
matrices and the environmental dataset B;.; :

A = ABT(35)"5, (©6)
where A is a diagonal matrix containing the canonical correlations. Using eq. (6), we can then

infer acoustic variables from environmental measurements and the previously learned CCA
model.

5. APPLICATION TO THE ALMA2017 CAMPAIGN

From the CW signals, the Mutual Coherence Function (MCF) was calculated, from which
was extracted the mean array acoustic intensity and the coherence radius L. as a function of
time. Those are our acoustic variables for CCA. Empirical Orthogonal Functions (EOF) were
calculated from the temperature data and from its vertical gradient. This allowed us to extract
the temporal evolution of the spatial modes. Determining with Rule-N the number of EOF
modes that we are allowed to consider, we took 3 modes of temperature and 2 modes of its
vertical gradient. The time-evolution of those modes constitute the oceanographic group for
CCA.

A running mean over 30 ping (equivalent to 1.5 hours) was applied to both datasets. This
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Figure 3: Measured (red) and inferred (blue) L. from CCA, for the four studied frequencies.

running mean is necessary as the acoustic variables should be statistical quantities, but it also
reduces the small temperature fluctuations that can be detrimental to CCA. The variables are
also centered and reduced to unit variance, as required in the CCA framework. Learning the
model from eq. (6), we can then estimate the reduced and centered L. on the test phase from the
temperature measurements. This estimation is rescaled by multiplying the standard deviation
and adding the mean of L. from the learning phase. We show the results in Fig. 3. The fits are
not exact but we still capture some of the temporal variations. One problem occurs in particular
when the mean and variance of L. are drastically different between learning and test phase, in
this case the re-scaling by the learning phase introduces an error. With the L. approximated, we
can now inform the sub-array processing as presented previously. Our scheme is particularly
adapted to the problem of source detection. Indeed, L. can be easily computed if we know that
a desired signal is received. However, if we are unsure that a signal is present, having a prior
estimation of its coherence can be beneficial.

We will use four algorithms on the data to compare their detection performances as a function
of the mean L. of the test phase : classical beamforming on the full array (FA CB), SoBaP on
the full array (FA SB), classical beamforming on the sub-arrays (SA CB), SoBaP on the sub-
arrays (SA SB). As we study in-situ data with a high SNR, we degraded the recordings by
adding noise sampled from the corresponding pings (ie. we degrade the signal while preserving
the temporal dependence of the noise). This allowed us to control the SNR values to study
detection performances. Hereafter we show results for a SNR of 0 dB. The algorithms were
run both on signal+noise and only noise to calculate respectively the probabilities of detection
(F) and the probabilities of false alarm (P,) for various detection thresholds. They were used
to trace the ROC curves and calculate their integrals up to P, = 0.1. A higher value means
better capability to detect a source above the noise. As an additional metric, we can calculate
the mean of % up to Py, = 0.1. A higher value means that a small increase in false alarm
probability gives a higher detection probability, and this is linked to better performances.

The integral of the ROC curves in Fig. 4 (left) shows that when the coherence of the wave-
front is low, SoBaP with sub-arrays shows on average the highest detection performances. Ad-
ditionally, SA CB is marginally better or equal to FA CB. It confirms that the sub-array algo-
rithm is effective at compensating the coherence loss, as it had been shown in [Lefort et al., 2017]
on simulated data. This behaviour is also seen on the derivative of the ROC curve, Fig. 4 (right).
When L. is low, the mean derivative is the highest when using SoBaP on sub-arrays. From both
figures it also seems that CB on the full array or on sub-arrays does not change behaviour dras-
tically with the coherence radius. When the coherence radius increases, SoBaP on the full array
performs better. This is expected as the algorithm assumes a totally coherent array. We then get
various ranges in L. where different algorithms seem to be the best suited to maximize array
detection performances. This result is adapted to our study case of the ALMA 2017 campaign,
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Figure 4: Integral (left) and derivative (right) of the ROC curves for a maximum false alarm
propability of 0.1 as a function of the mean coherence radius, at 0 dB SNR.

and thus should be confirmed on other data.

6. CONCLUSION

Based on our previous work, we have used CCA to generate a linear model linking oceano-
graphic and acoustic statistical data from a training phase. This model can later be used as a
predictor of acoustic variables on an array (coherence length, mean-array intensity) using only
temperature data.

In a second phase, the coherence length prediction helps to inform a sub-array processing
algorithm and improve its performance in terms of ROC curves. First, the performance of classi-
cal beamforming was used and analysed on the full array and on sub-arrays. Shorter sub-arrays
significantly reduce the angular resolution. Therefore, we attempted a regularisation scheme
using SoBaP, a Bayesian algorithm from the literature, to recover the lost angular resolution.
We show that SoBaP on sub-arrays increases the detection performances on experimental data
when the coherence radius is small. On the contrary, when the coherence radius is larger, algo-
rithms on the full array slightly outperforms sub-array methods.

It should be noted that the noise model assumed by SoBaP is Gaussian uniform. However,
real noise is directional and does not always follow a Gaussian distribution. Some preliminary
work on this issue using continuous DOA models is currently underway. This work could be
a first step in an ocean-acoustic meta-modeling scheme that would combine pre-trained ocean
acoustic models with in-situ oceanographic observations.
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