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Abstract: We investigate generative deep learning models, namely a R3GAN and a diffusion
model (DM), for the generation of synthetic sidescan sonar images. Both models are able to
generate snippets with realistic object and shadow geometries as well as pixel distributions.
Since sonar data from specific objects is scarce, the synthetic images are used to augment a
training dataset for object classification. This augmentation can increase the performance of
a shallow convolutional neural network (CNN) as well as a state-of-the-art vision transformer.
In our analysis, images from R3GAN show a higher variability but images from DM lead to a
better performance of the classification models improving the balanced accuracy of the CNN
by 12%.
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1. INTRODUCTION

With the analysis of sonar images being increasingly shifted towards the use of deep learn-
ing models the need for sufficient training datasets grows. Compared to other computer vision
applications, like autonomous driving, there exists no large, publicly available dataset of sonar
images for a broad range of object classes. Furthermore, gathering and annotating real world
data with a high degree of variability is cumbersome and expensive. It requires specialized
equipment as well as trained staff. Thus, research on generating synthetic sonar images gained
more attention in recent years. Applications range from highly realistic but computational slow
models based on the wave equation and ray tracing [1] over Fourier-domain wavefield render-
ing approaches [2] to faster but less transparent deep learning based generative models, such as
generative adversarial networks (GAN) [3, 4]. In the past few years diffusion models (DM) [5]
have been established as another standard in the computer vision domain for generating syn-
thetic images, especially to generate natural RGB images. This alternative approach to GANs
does not suffer from training instabilities, like mode collapse, and can produce more detailed
images, but typically requires more training data. DMs have recently been applied to enhance
the resolution of sonar images which led to an improved classification performance [6].

In this work we, for the first time, train a GAN as well as a DM to generate realistic sidescan
sonar images of multiple object classes. We consider the classes 7ire, Cylinder and Wreck.
For these object classes less than 30 training samples are available. The aim of these synthetic
images is to augment a dataset of real sonar images for the training of a classifier. We use
a basic convolutional neural network (CNN) as well as a modern vision transformer (ViT) as
classifiers. In our study we compare the images generated by the GAN and DM based on
qualitative measures, e.g., realistic object and shadow shapes, and on their ability to increase
the performance of the classifiers when being used to augment the training dataset. Furthermore,
we investigate the variability of the methods by successively increasing the portion of synthetic
images in the training dataset and using a clustering based approach.

2. METHODS AND MATERIALS

2.1. SIDESCAN SONAR DATASET

The sidescan sonar images used to train and evaluate the generative models as well as the
classification models were collected during several measurement campaigns between 2019 and
2020. An Edgetech 2205 system operating at 850 kHz mounted on an ATLAS ELEKTRONIK
SeaCat AUV was used to gather this data. The sonar data was processed with an experimental
processing chain to form grayscale intensity images. Snippets of relevant objects were manually
extracted to form the dataset. Similar to previous work [7] this dataset consists of the classes
Tire, Rock, Cylinder, Wreck and Background. In Table 1 the number of samples per class in the
training and test dataset are listed. As it can be seen from the number of snippets, the classes Tire,
Cylinder and Wreck are underrepresented. These will be the objects for which the generative
models should generate additional synthetic data. Since multiple snippets of the same object
exist, the training and test split was setup such that snippets from the same object are only in
one dataset. Due to the limited amount of data, snippets from the three underrepresented classes
were split nearly 50/50 while adhering to the aforementioned constrain.



Object class Tire Rock Cylinder Wreck Background
Number of
training 18 500 22 12 500
snippets
Number of
test snippets

17 719 19 12 719

Example
image

Table 1: Overview of the sidescan sonar dataset.

2.2. GAN MODEL

A GAN is a deep learning model which can be used to generate synthetic images based on a
provided training dataset. It consists of two sub-models, the generator GG and the discriminator
D, which are typically implemented as a CNN and trained in an adversarial manner. On the
one hand, the discriminator learns to distinguish between images from the dataset and those
from the generator. On the other hand, the generator is trained to transform a noise vector z
into images similar to the training samples x in order to fool the discriminator. In general, this
training procedure can be described by the loss function

L =E.p. —log(1+exp(—=D(G(2)))) + Eonpyu, —log (L +exp (=D(2))), (1)

which the discriminator tires to maximize and the generator to minimize. Here p, and pgq, are
the distributions of the noise and training data, respectively. A common problem when training a
GAN is the so-called mode collapse. This is a state of the GAN in which the generator outputs
the same image regardless of the input noise. Different loss functions, like the Wasserstein
loss [8], or other training strategies like specific pre-training [9] have been developed to deal
with the training difficulties of GANS.

In this work we use the state-of-the-art R3GAN [10] for generating synthetic sonar images.
R3GAN uses a regularized relativistic GAN loss to over-come the training difficulties. This
loss combines a relativistic pairing loss [11]

L = E.p. snpaars — l0g (14 exp (D(G(2)) — D(x))) (2)

with the zero-centred gradient penalties
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where v is a hyperparameter controlling the degree of regularization. The relativistic paring
loss directly couples the real data x ~ pgq:, and synthetic images x ~ p¢ in the training process
while R, and R, regularize the gradient norm of D on the real and synthetic images, respec-
tively. Both regularization term should ensure the convergence of the model. Furthermore, the



networks of D and G are designed based on a modern ResNet architecture. Both networks con-
sist of residual blocks and are setup symmetrically meaning that the generator upsamples the
input through the resolutions 4 x 4, 8 x 8, 16 x 16 and 32 x 32 while the discriminator down-
samples the image through the reverse order of resolutions. For a detailed overview about the
architecture see [10]. We train R3GAN with its default parameters for 7813 iterations, which is
equivalent to 250,000 images.

2.3. DENOISING DIFFUSION PROBABILISTIC MODELS

Denoising Diffusion Probabilistic Models (DM) are a class of generative models to synthe-
size data, given a two-staged process. In a forward diffusion process a clean input image x
taken from the training dataset is gradually disturbed by adding Gaussian noise. After com-
pleting consecutive noising steps, also referred to as timesteps, the image content approaches
an isotropic Gaussian noise while the information is lost in noise completely. In the reverse
process, a neural network (typically a U-Net architecture) is trained to remove the added noise
to unveil the original data or at least data that look similar to the original one. With this ap-
proach the network was supposed to learn the underlying pixel distribution in the datasets. The
term pixel distribution refers to the spatial dependencies among neighbouring pixels (up to the
complete image domain), rather than the statistics of individual pixels in isolation. The loss
function to be minimized is the mean squared error (MSE) between the true noise € and the
predicted noise €y added at timestep ¢

L =3 Eenonle— ez )]’ (5)
¢

where [ is the identity matrix, z; is the disturbed image and ¢ is uniformly sampled from 1
to 7', the maximum number of steps. The generation of synthetic images starts with isotropic
Gaussian noise and all pixels not obeying the learned pixel distribution are removed respectively
denoised.

The standard DM loss functions treat all timesteps equally, which may lead to bias towards
early learning steps and tend to overfit to high signal-to-noise (SNR) examples, which is of
special interest for sonar images which might suffer from noise. Therefore the P2-weighting
was introduced [12, 13], which formulates a loss re-weighting function w(t) based on the signal-
to-noise ratio. It was proven to neglect early (less noisy) steps and promotes learning in later
(more noisy) steps. Following widely adopted implementations the explicit weighting scheme
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with

w(t) = (W) ™)

is applied, where « is a hyperparameter, commonly set as « € [1.0,2.0]. In all our experiments
the training was started from scratch, where for each object class € {Tire, Cylinder, Wreck} one
individual network was trained and used afterwards to generate synthetic object images.



Exp Tire Cylinder Wreck Rock Background
" | real | synth. | real | synth. | real | synth. | real | synth. | real | synth.
1 18 |0 22 |0 12 |0 36 |0 36 |0
2 18 | 18 22 | 14 12 | 24 36 |0 36 |0
3 18 | 32 22 | 28 12 | 38 50 |0 50 |0
4 18 | 82 22 |78 12 | 88 100 | O 100 | O
5 18 | 482 22 | 478 12 | 488 500 | O 500 | 0

Table 2: Number of real and synthetic snippets per class in each experiment.

3. EXPERIMENTAL SETUP

The main purpose of generating synthetic sonar snippets is to augment a training dataset
for a classification model at hand. Thus, the quality of the generated images will be measured
indirectly in terms of performance improvements of the classification model. Especially, we are
interested in how many synthetic snippets can be generated and added to the training dataset to
still see noticeable improvements. In Table 2 the five experiments conducted in this work are
listed, with increasing number of training snippets, where Experiment I serves as the baseline
without any synthetic data added. Based on previous work [9] we reduce the number of rock and
background snippets to be 36 in order to balance the dataset. In Experiment 2 we add synthetic
snippets to the classes Zire, Cylinder and Wreck so that every class has 36 training snippets in
total. Since this number is still very low compared to conventional deep learning dataset, we
successively increase the number of real rock and background snippets as well as synthetic tire,
cylinder and wreck snippets through Experiments 3 — 5. The total number of snippets per class
is 50, 100 and 500, respectively.

We train two different classification models on the datasets described in Table 2, namely a
shallow CNN used in previous work [7] and a state-of-the-art vision transformer (ViT) [14].
Our shallow CNN consists of three convolutional layers with 8, 16 and 32 kernel of size 3 x 3.
The output of a convolutional layer is passed through a ReLU activation function, batch nor-
malization and 2 X 2 max pooling. Features from the last convolutional layer are compressed
using a fully connected layer with 100 neurons prior to the final output layer with five neurons.
Dropout is added before both fully connected layers. All input images are scaled to match the
input size of the network, which is 64 x 64 pixel. We train this CNN without any pre-training
for 50 epochs with the Adam optimizer and a learning rate of 10~%, which is reduced by a factor
of 0.1 after every 20 epochs.

As an alternative method to verify the gain in performance we employ the original vision
transformer with little modifications to account for sonar images and training data used. The
core innovation in using ViT architectures is the replacement of traditional CNN architectures
with transformer encoder architectures, well known from natural language processing. This
milestone introduced a new performance area for image classification tasks. The image under
consideration is split into fixed-size patches, flattened and embedded linearly into a vector. A
token is added to represent the image’s overall classification and processed by a transformer
encoder stack, consisting of multi-head self-attention and feedforward layers, to be forwarded
to a multi-layer perceptron head for final classification. In our experiments we made use of the
ViT base model (ViT-B) with patch sizes of 16x16 pixels, with pre-trained weights from the
ImageNet-1K dataset. For the different sonar datasets with varying cardinality in our experi-
ments, we achieved comparable performances by employing 5 to 25 epochs, using the Adam



optimizer and a learning rate of 10~°. In the following we report the performance for the model
trained for 20 epochs. In addition to that we reduced number of neurons in the classification
MLP to 100 and the number of classification classes to 5 to match the sonar dataset.

We evaluate the classification performance of both models in all five experiments using the
balanced accuracy

ACChy = ] z;recall (8)
ce
and the macro F1-score
2 - precision(c) - recall(c)
F1 9
macro = Icl CEZ; ]C! Z; precision(c) + recall(c) - ©)

Both metrics take an average over the different classes C = {Tire, Rock, Cylinder, Wreck,
Background} and are thus suitable for the unbalanced test dataset. Note that neither during
training of the generative models nor during training of the classification models images from
this test dataset have been used.

To further study the data generated by the GAN and the DM we investigate the diversity in
the synthetic images. For this we use a clustering based approach [7]. The clustering approach
starts by selecting one generated image as the center of a cluster. Images whose pixel-wise
Euclidean distance to this initial image is below a given threshold will be grouped to this cluster.
In the next iteration an image that has not been assigned to a cluster serves as the center point
of the next cluster and the process is repeated with all unassigned images. Finally, the number
of clusters determines the diversity of the synthetic images, with a large number of clusters
relating to a high diversity.

4. RESULTS

4.1. GENERATED IMAGES

Before investigating the influence on the classification performance we analyse the synthetic
images generated by R3GAN and DM quantitatively. Figure 1 shows five random examples
per class from both generative models. Both methods succeed in generating the required object
shapes and realistic shadow geometries. The contrast in the images generated by DM is higher
than the one in the images from R3GAN. Both models generate different snippets and do not
suffer from any form of mode collapse. All cylinders generated by R3GAN in Figure 1 (a)
have the same orientation, which is also over-represented in the remaining generated images.
The training dataset, however, also contains examples with a different orientation (see Table 1).
Thus, R3GAN seems not to be able to cover this variability. The images generated by DM
show a strong similarity to the training images, e.g., the first generated wreck is similar to the
example shown in Table 1.

4.2. CLASSIFICATION PERFORMANCE

Table 3 lists the classification performance measured in balanced accuracy and macro F1-
score for the five experiments and images generated by R3GAN and DM. Note that since the



L
AR NS
(a)

Figure 1: Synthetic snippets generated with (a) R3GAN and (b) DM.

Exp. | Generator CNN Vit
ACChg) Flmacro ACChq1 | Flmacro
1 - 0.493+0.033 | 0.423+£0.015 | 0.287 0.348
2 | R3GAN 0.50640.044 | 0.440+0.018 | 0.249 0.216
3 R3GAN 0.5314+0.031 | 0.45740.023 | 0.322 0.249
4 | R3GAN 0.528+0.032 | 0.461£0.021 | 0.402 0.331
5 R3GAN 0.443+0.047 | 0.395+£0.016 | 0.408 0.465
2 | DM 0.559+0.055 | 0.445+£0.029 | 0.290 0.320
3 DM 0.534+0.034 | 0.460+£0.022 | 0.293 0.493
4 | DM 0.55240.029 | 0.469+0.017 | 0.289 0.277
5 DM 0.48140.050 | 0.430+0.033 | 0.442 0.440

Table 3: Classification performance of the CNN and ViT in the five experiments with increasing
number of synthetic snippets. Best value marked in boldface.

capacity of the shallow CNN is too small to be pre-trained on ImageNet-1K it is initialized with
random weights. Thus, we initialize and train the shallow CNN ten times and report the mean
and standard deviation of the metrics in Table 3. Experiment I serves as the baseline perfor-
mance without any synthetic data. Through Experiment 2 to 5 the number of synthetic images
is successively increased (see Table 2). Except for Experiment 5, which adds over 470 syn-
thetic samples per class, augmenting the training dataset leads to an improvement in balanced
accuracy and macro F1-score for the shallow CNN. With images generated by R3GAN the per-
formance even decreases in Experiment 5 compared to the baseline. In contrast to this, the ViT
required a large training dataset and only shows a clear improvement in balanced accuracy and
macro Fl-score in Experiment 5. For the shallow CNN images from DM lead to a better per-
formance in the individual experiments than images from R3GAN. Also, for most experiments
the images from DM lead to a better performance of the ViT. The best overall performance
is achieved with the shallow CNN in Experiment 4 with 100 samples per class and synthetic
images generated by the DM. Adding the synthetic snippets increases the balanced accuracy by
12% and the macro F1-score by 11%.
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Figure 2: Number of clusters of the synthetic snippets for class (a) Tire, (b) Cylinder and (c)

Wreck.

4.3. DIVERSITY ANALYSIS

As described at the end of Section 2 we investigate the variability of the generative models by
clustering. We generate 1,000 images of the classes Tire, Cylinder and Wreck with both models
and perform the clustering separately for each class. Figure 2 shows the number of clusters for a
varying distance threshold. Naturally, as the threshold decreases the number of clusters grows.
The black line indicates the mean distance across all 1,000 images for each class as a reference.
Based on the number of clusters R3IGAN shows a higher variability than DM. Already for a low
threshold of 2.5 - 10~* the number of clusters if below 50 while for R3GAN each image is still
its own cluster. For the class Tire and a threshold of 0.001 R3GAN and DM produce 58 and 33
clusters, respectively, which improves over previous results of a transfer-learned GAN with 21
clusters [9].

5. SUMMARY

In this work we have, for the first time, compared a GAN and a DM for the generation of
synthetic sidescan sonar images. Both methods are able to create realistic highlight and shadow
geometries of different object classes. Augmenting a training dataset for classification with the
synthetic snippets leads to a performance improvement of a shallow CNN as well as a ViT.



The better performance is achieved with images from DM which can increase both balanced
accuracy and macro F1-score by more than 10% for the CNN and more than 25% for the ViT.
We anticipate an improvement, though not as significant, with a more comprehensive dataset
that 1s more representative for a classification problem. We have also analysed the variability of
the generated images, which is higher for R3GAN. The better quality and contrast of the images
generated by the DM can be a reason for the better results in the classification analysis.
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