Current state of the openSTB sonar simulator

Blair Bonnett!, Holger Schmaljohann?, Sudhanshu Apte!, and Thomas
Fickenscher!

! Chair for Radio Frequency Engineering, Helmut Schmidt University,
22043 Hamburg, Germany
2 Bundeswehr Technical Center for Ships and Naval Weapons, Maritime
Technology and Research (WTD 71), 24340 Eckenforde, Germany

Corresponding author: Blair Bonnett, Lehrstuhl fiir Hochfrequenztechnik, Fakultdt fiir Elek-
trotechnik, Helmut-Schmidt-Universitdt, 22039 Hamburg, Germany, blair.bonnett@hsu-hh.de

Abstract: The development and implementation of algorithms for synthetic aperture sonar
(SAS) processing requires data with ground truth for validation. In most instances, it is dif-
ficult or even impossible to collect real data with sufficiently accurate ground truth. Instead,
simulated data is commonly used for this purpose. The requirements for these simulations may
range from a simple setup with a few point targets to large models of realistic scenes requiring
significant computational resources.

We previously outlined plans to create an open-source sonar simulation framework to facil-
itate community-driven development and sharing of simulation techniques. This project, subse-
quently named the openSTB (open sonar toolboxes) simulator, is now under active development.
1t is written in Python utilising widely available numerical processing libraries such as NumPy,
and has support for high-performance computing (HPC) environments built in. It is designed
in a modular structure with each plugin having a specified interface. A simulation is then cre-
ated by combining the desired plugins. As well as the actual simulation methods, this modular
structure extends to the loading of inputs and saving of results, allowing the simulator to be
integrated with existing data formats and other processing tools. Many common implementa-
tions of these plugins are included, while the defined interface allows users to write their own
to customise the simulations to their needs.

In this paper we will present the current state of the openSTB simulator. This will include
examples of different simulations that can be performed, including simulations utilising an HPC
cluster. Future plans for further included plugins and simulation techniques will also be out-

lined.

Keywords: synthetic aperture sonar, simulation



1. INTRODUCTION

Developing, implementing and improving any processing algorithm requires data with ground
truth, i.e., for which correct results is known, in order to evaluate its performance. It is often dif-
ficult or impossible to collect such data suitable for verifying sonar algorithms. For example,
tracking the position of a vehicle while it is underwater typically relies on an intertial navi-
gation system. This is not sufficiently accurate to generate a well-focused synthetic aperture
sonar (SAS) image. Techniques such as the displaced phase-centre antenna (DPCA) algorithm
are used to correct the navigation data based on the collected sonar data. By definition, real
data with this problem does not have ground truth and so using it to analyse the performance of
the correction algorithm can only be done with secondary statistics such as the sharpness of an
image generated using the corrected navigation. Simulated data is therefore vital for evaluating
the performance of such algorithms.

The complexity of the required simulations will vary based on application. Simulating a
small number of ideal point targets can be sufficient for simple cases such as checking the point
response of a processing chain. Bigger scenes can be modelled with a large number of point
targets. Some algorithms may required more advanced techniques such as incorporating elastic
scattering effects or modelling shadows cast by objects in the scene. Each increase in simulation
complexity results in a corresponding increase in both the effort required to write and validate
the simulation code and the computational resources required to perform the simulation in a
timely manner.

In a presentation at the International Conference of Underwater Acoustics in 2024, we pos-
tulated that a significant majority of sonar researchers had at some time written a simulator of
some form. We then proposed the creation of an open-source sonar simulation framework to
refocus such individual development efforts into a single tool that would benefit the whole com-
munity. Access to a high-quality simulation tool would also reduce the cost of entry for new
researchers in the community who need data to work with. A standard tool to create controlled,
reproducible data could also be useful in evaluating and comparing different algorithms for a
particular task.

This simulation framework, named the openSTB (open sonar toolboxes) simulator, is now
under development using the BSD-2-Clause Plus Patent license. In this paper we will first list
the general design principles used for the simulator and then the software stack it uses. An
overview of how the simulator can be accessed and used along with its current features are then
given, followed by some example simulations. We conclude with an overview of our ideas for
future improvements to the simulator.

2. DESIGN PRINCIPLES

A general-purpose simulator needs to be readily adaptable to the needs of each user. To
ensure this flexibility, the following design principles have been adopted for the openSTB sim-
ulator:

* Everything should be a plugin. All operations, from loading a configuration through
modelling a physical process to scheduling computation of each piece of the simulation
and saving the results in the desired format should be performed by plugins. A simulation
is then defined as the set of plugins that should be combined to generate the output.



* Plugins should be easy to write. In order to customise a simulation, the user may wish
to write their own plugins. The interface for each kind of plugin needs to be well-defined,
and the expected inputs and outputs clearly documented.

* Plugins should be easy to install and use. Having written a plugin, the user needs be
able to easily install it so that the simulator can find it, or be able to simply point the
simulator to the file containing the plugin.

 Batteries should be included. Many operations will be common across a wide range of
simulations. Plugins for such operations should be provided with the simulator.

3. SOFTWARE STACK

The Python programming language has been chosen as it is itself open-source and widely
available, and has a large numerical and scientific programming ecosystem. We also believe that
a large proportion of the target audience of the project will have some degree of familiarity with
both Python and the scientific Python ecosystem. Although the intention is for the simulator to
contain sufficient plugins for many use-cases, using a language with which users are likely to
be familiar lowers the barrier to customising it with their own plugins.

As of the time of writing the external libraries the simulator depends on include the following:

* NumPy (https://numpy.org/) for array handling and numerical computation
* SciPy (https://scipy.org/) for various scientific computations

* Dask (https://www.dask.org/)and its distributed task scheduler (https://distributed.
dask.org/) for parallel and distributed computing

» Zarr (https://zarr.dev/) for storing results

* Quaternionic (https://quaternionic.readthedocs.io/) to implement quaternion
algebra for rotations

* Click (https://click.palletsprojects.com/)to generate a command-line interface
to use the simulator

It is worth noting that the Numba just-in-time compiler (https://numba.pydata.org/) is
included as a sub-dependency of these libraries. It is envisaged that in the future some parts of
the simulator may utilise Numba for performance improvements.

Large simulations are computationally expensive, but the process is typically straightforward
to parallelise as in many cases the final result for a collection of targets can be broken into a sum
of the results obtained from subsets of those targets. The Dask library used by the simulator
provides support for parallel computing by maintaining a graph of tasks to be performed and
scheduling their execution. The standard Dask scheduler works on a single machine, utilising all
the CPU cores (or a portion of the cores if desired) to perform a parallel computation. To utilise
a high-performance computing (HPC) environment, the Dask distributed scheduler can be used.
This distributes the computation across multiple nodes in a cluster, and can be used with many
common HPC resource managers. The simulator includes support for both the single-machine
and distributed schedulers.

It is intended to follow the scientific Python community’s SPEC0O (Minimum Supported De-
pendencies) guideline [1] to determine which versions of Python and the libraries to support.
Broadly, this corresponds to versions of Python released in the previous three years and ver-
sions of the libraries released in the previous two years. Exceptions may be made if required,
for example to avoid a critical bug in a library.


https://numpy.org/
https://scipy.org/
https://www.dask.org/
https://distributed.dask.org/
https://distributed.dask.org/
https://zarr.dev/
https://quaternionic.readthedocs.io/
https://click.palletsprojects.com/
https://numba.pydata.org/

4. USING THE SIMULATOR

The openSTB website at https://openstb.dev hosts documentation and other details
about the project. Development of the simulator occurs on GitHub at https://github.com/
openSTB/simulator. Users who wish to help with future development, or who want to test
new features, can install it from that Git repository. Releases are made on the Python package
index (PyPI) under the name openstb-simulator so that the simulator can be installed with
the user’s preferred Python package manager.

It is envisaged that many users will want a simple interface which they can supply with a
configuration file and receive the results of the simulation. The simulator includes a simple
command-line interface to provide this functionality. By default, it reads a configuration file in
TOML format but, in keeping with the design principles, support for other configuration formats
can be added as plugins (this could include support for loading the configuration from a network
source). The configuration file defines the set of plugins, including all relevant parameters for
those plugins, which make up the simulation.

Other users may wish to use the simulator as a library, for example to perform multiple
simulations with varying parameters, to integrate it into an existing interface or simply to use the
functionality of some plugins. The code is structured so as to facilitate such use, whether from a
simple script or from a more interactive source such as a Jupyter notebook. It is commented, has
full docstrings to describe the behaviour of each function and includes static typing information.

4.1. CURRENTLY INCLUDED PLUGINS

As mentioned in the design guidelines, the components of a simulation are implemented as
plugins. In this section, we provide a non-exhaustive overview of the plugins that are included
with the simulator at the time of writing. This is intended both to show the sorts of simulation
that are possible ‘out of the box’, and to give an idea as to how simulations can be customised
by replacing the appropriate components.

Ultimately, a sonar system can be described to the simulator as a transmitter, one or more
receivers and the signal used by the transmitter. A transducer plugin gives details of the po-
sition, orientation and distorting factors (such as the beampattern) of both the transmitter and
the receivers. The signal plugin is responsible for sampling the transmitted signal for use in the
simulation. These samples can be windowed by an attached window plugin; currently a set of
common windows are included. These plugins can be separately defined or, for convenience,
a system plugin can be used to provide all details of a particular system.

The trajectory followed by the system during the simulation is specified by a plugin which
reports the position, orientation and velocity of the system at a requested time. Plugins imple-
menting idealised trajectories are included, and it is straightforward to write a custom plugin
which loads this information from an external dataset. Similarly, the times at which a ping is
started is provided by a plugin; implementations for a constant time interval between pings and
a constant distance travelled between pings are included.

After a ping is transmitted, the simulator needs to calculate how long the signal takes to
reach a particular target and return to the sonar. This is done by a travel time calculator plugin;
implementations making the stop-and-hop assumption and iteratively calculating the travel time
to include intra-ping motion (described in more detail in the example simulation section) are
both included.


https://openstb.dev
https://github.com/openSTB/simulator
https://github.com/openSTB/simulator

Distortions, either amplitude-only or frequency-dependent, model how the signal changes
as it propagates. Currently included plugins include acoustic attenuation based on the model
in [2], Doppler distortion of the signal due to the movement of the sonar, geometric spreading
and beampattern effects of the transducers.

Higher-level operations are also designed as plugins. This includes how to load simulation
configuration from a file (support for a TOML configuration file is included), how to utilise the
other plugins to perform a simulation (a point target simulation is currently implemented) and
how to store the results (support for both NumPy and MATLAB files are included).

5. EXAMPLE SIMULATIONS

The following simulations use idealised point targets to model a scene. Each of these targets
has a reflectivity factor which is the fraction of incident energy that is scattered back to the sonar;
note that there is no aspect dependence. This is a simple model of the behaviour of a target, but
can suffice for many applications, and is also a useful approach to validate the general design
of the simulator framework.

The simulation is performed in the frequency domain. This allows the time delay correspond-
ing to the travel time to be applied without interpolation, and also enables frequency-dependent
effects to be modelled. The steps taken to calculate the echo observed by a receiver from a
target are:

1. Evaluate the spectrum of the transmitted signal at the frequencies corresponding to the
desired length and sampling interval of the final simulated result.

2. Modify the spectrum with any transmit effects, for example the beampattern of the trans-
mitter, spreading losses or acoustic attenuation.

3. Compute the two-way travel time it takes the transmitted pulse to reach the target and
echo back to the receiver.

4. Apply this delay and the target reflectivity to the spectrum.
5. Apply any receive distortions to the spectrum.

6. Use an inverse Fourier transform to obtain the time-domain echo signal from the target.

Summing the echoes from each of the targets in the scene gives the final signal recorded by
the receiver. Note that in practice this summation is performed in the frequency domain before
taking the inverse Fourier transform. For large scenes, each worker can independently com-
pute the echo from a subset of the targets with the final result then being the sum of all these
intermediate results.

The system used for the examples consists of a 3 cm wide and 5 cm high transmitter and a
35-element linear array of 3 cm by 3 cm receivers with a 3.5 cm spacing between elements. A
10 ms long linear frequency-modulated chirp from 70 kHz to 90 kHz was transmitted. Spherical
spreading, acoustic attenuation and the beampatterns of the transducers were included in the
simulation, though it is worth noting that our processing toolchain compensates for these effects
when reconstructing an image. Configuration files for all the following simulations are included
as examples with the simulator.



Not modelled Uncompensated Compensated

awiy [oARI],
dB relative to maximum

Along-track relative to target position (cm)

uonoysip 1ojddoq

Across-track relative to target position (cm)

Figure 1: Point-spread function of images reconstructed from simulations of a single point tar-
get. The top row models the impact of the vehicle motion on the two-way travel time
while the bottom row models the Doppler distortion of the signal. The left column has
no motion effects, the middle column shows the impact of the uncompensated motion,
and the right column applies compensation during reconstruction. The axes show
position relative to the target location which is marked with a red cross.

5.1. INTRA-PING MOTION

It 1s not uncommon to use the stop-and-hop assumption that the vehicle is stationary for
the duration of a ping and then instantaneously moves to the position of the next ping. From
a simulation viewpoint, this both simplifies the computation of the two-way travel time of an
acoustic pulse, and removes a source of distortion which may otherwise complicate the analysis
of the results if the intra-ping motion is not relevant. However, in some cases it is desirable to
model the continuous movement of the vehicle during ping to give a more realistic result.

One of the included travel time plugins supports finding the two-way travel time taking
motion into account. The velocity at the time of transmission is used to approximate the receive
position, and then the time of reception is iteratively adjusted until the time taken for the sonar
to move to the proposed receive position matches (within some tolerance) the time the sound
would take to move along the corresponding path to the target and back to that receive position.
The upper row of Figure 1 shows (from left to right) the point-spread function (PSF) of a single
target with the stop-and-hop approximation, the PSF with this iterative travel-time plugin in
use and is not compensated during imaging, and the PSF if the motion is compensated during
imaging. The intra-ping motion shifts the target, and the compensation corrects the shift.

The movement of the sonar also causes a Doppler shift to the signal. One of the plugins
models this following the wide-band approach of [3] to calculate a scale factor n and modify
the spectrum of the echo from each target accordingly. The lower row of Figure 1 shows a
similar set of PSFs (Doppler not modelled, uncompensated and compensated). The distortion
consists of both a shift and a blurring of the PSF, and can be compensated during imaging.



—_
(=}

Along-track (m)
)
S

dB relative to max

(5]
(=]

IS
S

30 32 34 36 0.0 0.2 0.4 0.6 0.8 1.0
Across-track (m) Normalised magnitude
(@) (b)

Figure 2: (a) The intensity image and (b) the magnitude histogram of a piece of the flat, bland
seafloor modelled by idealised point targets. The overlaid line in (b) is a Rayleigh
distribution fit to the data.

5.2. BLAND SEAFLOOR

It is important to ensure that the available resources are being fully utilised during a simula-
tion. To check this, a patch of bland seafloor was modelled by a rectangle measuring 30 m in
along-track and 50 m in across-track containing uniformly distributed point targets at a density
of 10 000 per m? or 3.44 per square wavelength at the centre frequency. The system followed
a 30 m long trajectory at a 10 m height over ground along the edge of the rectangle. 66 pings
were simulated, spaced 45 cm apart and each recording a trace of duration 0.25 s.

Five nodes of the HSUper cluster at Helmut Schmidt University were used to run the simula-
tion. Each node had two Intel Xeon Platinum 8360Y processors and 256 GB of RAM, yielding
a total of 360 CPU cores. The simulation, consisting of 2310 traces from each of the 15 million
targets, was completed in 1 day and 20 hours of wall time using almost 690 days of CPU time.
This successfully saturated the available cores, indicating the simulation controller and Dask
scheduler were not causing bottlenecks. Figure 2 shows a section of an image reconstructed
from the simulated data. This image exhibits the expected fully-developed speckle with the
histogram of the magnitudes having the corresponding Rayleigh distribution.

6. FUTURE PLANS

Although point target modelling is useful in many cases, it is intended to add a facet-based
simulation method. This would allow scattering models based on the target properties and the
incident and scattering angles to be attached to each target in a scene. The shadows cast by
objects in the scene could also be modelled with such a simulator, for example by following the
methods in [4]. Further extensions, such as to model double-scattering within the scene, could
also be investigated. Other simulation methods, for example the recently-published Fourier-
domain wavefield rendering [5], could be considered in the future.

At this stage, the simulations only use CPU processing. It is desired to extend it to use
available GPUs. This would include investigating how to optimally use a mixture of GPU and
CPU resources, such as in a single workstation or in a cluster with many CPU nodes and few
GPU nodes.



Some investigation into how the simulator behaves with very large scenes is required. This
may necessitate some changes in how a simulation is divided into tasks to avoid memory prob-
lems. On a related note, the limits of the Dask task scheduler have not yet been explored. Each
task requires a scheduler overhead of around 200 us to handle [6]. Above a certain number of
cores (dependent on the duration of the tasks), the scheduler will be saturated and cause a bot-
tleneck. This upper limit is likely to be in the thousands of cores. It is suspected that this will
not be a problem for most use-cases. Increasing the number of usable cores would require either
increasing the size of each task (which has its own limits, for example, the available memory
on a node) or moving to a custom scheduling solution, such as direct MPI communication.

It is hoped that plugins will be contributed by the community. Plugins which are likely to be
widely useful and straightforward to maintain may be accepted into the main repository. It is
intended to create an organisation to store and list user-contributed plugins that are not added
to the main project (for those familiar with the Sphinx documentation generator, similar to the
sphinx-contrib group for its community-provided addons).

The overall project (open sonar toolboxes) has been designed to be able to expanded to
projects other than simulation. For example, a toolbox implementing common image recon-
struction methods could be created, or one which performs post-processing operations such as
autofocus. These would not be required to be in Python, and could serve both as useful starting
points for new research and in benchmarks for comparing results between different systems or
algorithms. Community involvement in this, as well as improvements to the simulation frame-
work, would be greatly welcome.

ACKNOWLEDGEMENTS

Computational resources (HPC cluster HSUper) have been provided by the project hpc.bw,
funded by dtec.bw — Digitalization and Technology Research Center of the Bundeswehr. dtec.bw
is funded by the European Union — NextGenerationEU.

REFERENCES

[1] Scientific Python. SPEC 0— Minimum Supported Dependencies. URL: https://scientific-
python.org/specs/spec-0000/.

[2] M. A. Ainslie and J. G. McColm. “A simplified formula for viscous and chemical absorp-
tion in sea water”. The Journal of the Acoustical Society of America, vol. 103, no. 3, 1998,
pp. 1671-1672.

[3] D. W. Hawkins and P. T. Gough. “Temporal Doppler effects in SAS”. Proceedings of the
Institute of Acoustics: Sonar Signal Processing, vol. 26, no. 5, 2004.

[4] B. Thomas, C. Sanford, and A. J. Hunter. “Occlusion Modeling for Coherent Echo Data
Simulation: A Comparison Between Ray-Tracing and Convex-Hull Occlusion Methods”.
IEEE Journal of Oceanic Engineering, vol. 49, no. 3, 2024, pp. 944-962.

[5] C.J. Sanford, B. W. Thomas, and A. J. Hunter. “Fourier-Domain Wavefield Rendering
for Rapid Simulation of Synthetic Aperture Sonar Data”. IEEE Journal of Oceanic Engi-
neering, vol. 49, no. 4, 2024, pp. 1501-1515.

[6] Dask. FAQ - Dask documentation. URL: https://docs.dask.org/en/stable/faq.
html (visited on 05/27/2025).


https://scientific-python.org/specs/spec-0000/
https://scientific-python.org/specs/spec-0000/
https://docs.dask.org/en/stable/faq.html
https://docs.dask.org/en/stable/faq.html

	Introduction
	Design principles
	Software stack
	Using the simulator
	Currently included plugins

	Example simulations
	Intra-ping motion
	Bland seafloor

	Future plans

